
to 15 kg) (25) and females are often 
hornless in the two smallest species (< 8 
kg: C. maxwelli and C. monticola) (26). 
Similarly Gazella contains two large spe- 
cies (> 40 kg) where females' horns are 
well developed, but in the smaller G. 
thomsoni (18.4 kg), females' horns are 
often vestigial (27). In the monospecific 
Oreotragus (12.9 kg), females have 
horns in only 1 of 11 subspecies (26). 

Being straighter and thinner, the horns 
of females are relatively more special- 
ized as stabbing weapons than are males' 
horns and as such may function more 
exclusively as defensive weapons 
against predators. The correlation be- 
tween body weight and the presence of 
horns in females may be a consequence 
of the relation between body weight and 
antipredator behavior in antelopes: 
smaller species rely on crypsis or flight 
while large species often show direct 
defense against predators (6). Defense is 
more effective in larger species because 
the larger species are bigger than most 
predators and, in particular, females of 
large species are very much larger than 
predators of their young (11, 13). Thus, 
horns are most likely to be of value to 
females in species of larger body weight. 
The utility of horns as antipredator 
weapons has received relatively little at- 
tention, probably because of the empha- 
sis on males in previous studies and 
because observations of effective de- 
fense are uncommon (I). While the anti- 
predator functions of horns may only be 
secondary in males, effective defense 
has been observed by both sexes in 
many of the better studied species (9, 11, 
12, 13). Horns are likely to confer a 
selective advantage even if they prevent 
predation only a few times over an aver- 
age lifespan. 

CRAIG PACKER* 
Allee Laboratory of Animal Behavior, 
University of Chicago, 
Chicago, Illinois 60637 
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Corollary Discharge Provides Accurate Eye Position 
Information to the Oculomotor System 

Abstract. The saccadic system accurately compensates for perturbations of eye 
position produced by microstimulation of the superior colliculus. This requires that 
information about the stimulation-induced change in eye position be provided by an 
extraretinal source-either proprioceptive endings in extraocular muscles or a 
centrally generated corollary discharge. It is shown that compensation remains 
intact after elimination of extraocular muscle proprioception, demonstrating that 
corollary discharge provides accurate eye position information. 

Precise information about the position 
of the eyes in the orbit is required for 
localization of visual targets (I) and is an 
essential component of current models 
of the oculomotor system (2). The ques- 
tion of whether eye position signals origi- 
nate from a central copy of the oculomo- 
tor command or arise peripherally from 
extraocular muscle proprioceptors is a 
fundamental issue in oculomotor physi- 
ology. 

A century ago Helmholtz concluded 
that knowledge of eye position was de- 
rived from a "measure of the effort of 
will required to move the eyes" (3). Such 

an internal signal representing an intend- 
ed change in eye position was referred to 
as corollary discharge by Sperry (4). 
Recently, physiological studies have 
shown that a number of brain areas con- 
tain neurons which have tonic firing 
rates correlated with eye position (5). 
These neuronal populations are function- 
ally close to the final oculomotor output 
and project to other centers involved in 
the control of eye movements. Such 
physiological and anatomical properties 
suggest that these neurons generate a 
corollary discharge which could be used 
to represent eye position. Unlike most 
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other structures under motor control, the 
eyes are not subject to changing external 
loads, so a given oculomotor output al- 
ways produces the same movement. Be- 
cause of this tight coupling of motor 
output with the resulting movement, a 
corollary of the motor command would 
indeed accurately reflect eye position. 

On the other hand, mammalian extra- 
ocular muscles are endowed with well- 
developed proprioceptors (6). Noting the 
presence of these receptors, Sherrington 
(7) proposed that extraocular muscle 
proprioception was the source of eye 
position information. Recent physiologi- 
cal studies have demonstrated that affer- 
ent fibers from extraocular muscles car- 
ry signals corresponding to muscle 
length and tension and are distributed to 
almost every known visuomotor center 
(8) .  

In this study we tested the hypothesis 
that corollary discharge alone provides 
accurate eye position information. After 
elimination of extraocular muscle pro- 
prioception (91, we used a saccadic 
tracking task (10) which required rapid 
and accurate feedback about eye posi- 
tion. A monkey looked at a lighted fixa- 
tion target in an otherwise dark room. As 
this target was extinguished a saccadic 
target was presented for 50 msec at a 
selected location in the visual field. On 
randomly selected trials, after the sac- 

cadic target was extinguished, but before 
the onset of the saccade to it, eye posi- 
tion was changed in a direction away 
from the target by microstimulation of 
the superior colliculus. After a brief 
pause at the new eye position, the animal 
made a compensatory saccade to the 
original saccadic target location. The 
compensatory saccade was different 
from the saccade that would have been 
generated based solely upon a retinal 
error signal (distance and direction of the 
target retinal image from the fovea). For 
compensation to occur, the saccadic sys- 
tem must be informed of the stimulation- 
induced change in eye position by an 
extraretinal source. If extraocular mus- 
cle proprioception is an essential source 
of eye position information, without it 
the oculomotor system would not be 
capable of generating an accurate com- 
pensatory saccade. On the other hand, if 
corollary discharge is used as an accu- 
rate eye position signal, the animals 
would continue to compensate in the 
absence of extraocular muscle proprio- 
ception. 

Two rhesus monkeys were used in the 
experiment. Each was implanted with 
scleral search coils (21) and trained to 
make saccades to visual targets (12). 
Skull cylinders were implanted over ap- 
propriately placed small craniectomies 
for microelectrode stimulation of the su- 

? ~ ~ e ~ ~ n ? ~ o ~ ~ ~ ~ e ! ?  Ti i + i 1 ,;, ,,:,:: T! , 
tive trials at two dif- 
ferent collicular stim- 
ulation sites, per- 
formed in the absence . . 
of extraocular muscle * .,.., , ,. , .. , . . 
proprioception and C ).. . .  , . . . . ..: . . . .  . . 
plotted in a plane Car- 
tesian coordinate sys- 1 oO 

perior colliculus. Display of visual tar- 
gets, monitoring of eye position, delivery 
of reward, and stimulation of the collicu- 
lus were computer-controlled (13). Prior 
to surgery, each animal was tested in the 
stimulation-compensation task by using 
systematically varied target locations. 
Then, with a subtemporal approach, the 
ophthalmic nerves were transected bilat- 
erally at their junction with the trigemi- 
nal ganglion, eliminating extraocular 
muscle proprioception. Complete tran- 
section was ascertained postoperatively 
by loss of the corneal blink reflex, then 
confirmed postmortem by the absence of 
labeling of trigeminal ganglion sensory 
neurons after injection of horseradish 
peroxidase into the extraocular muscles. 
Intraoperative damage to the oculomotor 
nerves was ruled out by normal action of 
the extraocular muscles postoperatively 
(14). After surgery each monkey was 
tested in the stimulation-compensation 
task. 

Preoperatively, compensation was 
tested for three collicular stimulation 
sites using two to five target locations 
per site. Each compensatory saccade 
exhibited a normal magnitude-velocity 
relation and followed a 20- to 60-msec 
fixation at the end of the stimulation- 
induced saccade. Compensation was ac- 
curate, showing an average error of 4.5 
degrees, ranging from 1.6 to 6.8 degrees, 
varying with target location and stimula- 
tion vector. This performance is compa- 
rable to that described in an earlier, more 
extensive study of stimulation-compen- 
sation behavior (13). After elimination of 
extraocular muscle proprioception, com- 
pensation remained intact (Fig. 1). Four 
collicular sites were stimulated using 
three to six target locations per site. As 
was the case preoperatively, each com- 
pensatory saccade had a normal wave- 
form and followed a brief fixation after 
the stimulation-produced saccade. Accu- 
racy of compensation was not signifi- 
cantly different, showing an average er- 
ror of 4.0 degrees, ranging from 2.1 to 7.3 
degrees. 

Postoperative compensation is possi- 
ble only if information about the stimula- 
tion-induced eye movement is still avail- 
able. Three possible sources of this eye 
position signal are the retina, extraocular 
muscle proprioception, and a centrally 
generated corollary discharge. In this 
study the dark experimental environ- 
ment and the absence of the saccadic 
target during and after the stimulation- 
induced saccade prevented retinal feed- 
back about change in eye position. Tran- 
section of the ophthalmic nerves elimi- 
nated extraocular muscle propriocep- 
tion. Thus, eye position information 
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corollary discharge which accurately 
represents the intended motor act and is 
used in generating further movements. 
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JOHN D. PORTER Subthreshold Excitatory Activity and Motoneuron Discharge 

DAVID L. SPARKS During REM Periods of Active Sleep 
Department of Physiology and 
Biophysics and Neurosciences Abstract. A striking paradox of the rapid eye movement periods of active sleep, 
Program, University of Alabama in which are typically characterized by the exacerbation of somatomotor atonia, is the 
Birmingham, Birmingham 35294 occurrence of muscle twitches andjerks. The purpose of this study was to examine 

the specific motoneuron membrane potential processes responsible for these myo- 
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