
ureotelic metabolism can occur even 
among embryos developing in fully clei- 
doic eggs, which d o  not take up supple- 
mental water from the environment. Re- 
tention of ureotely in this case cannot be 
explained by suggesting that embryonic 
softshell turtles lack the biochemical pre- 
adaptations necessary for uricotely (18) 
because they have the capacity to  form 
urate (Fig. 1). Thus, our results raise the 
possibility that uricotely is not a neces- 
sary outcome of natural selection for 
mechanisms to conserve water during 
embryonic development (19) and indi- 
cate a need to reassess the adaptive 
significance of uricotely among embryos 
of other terrestrial vertebrates. 
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Burst Discharge in Mammalian Neuroendocrine Cells 

Involves an Intrinsic Regenerative Mechanism 

Abstract, Zntracellular recordings from mammalian neuroendocrine cells showed 
that steady, injected currents can modify and block periodic spike bursts previously 
associated with increased neurohormone release. Spike afterpotentials could sum to 
form plateau potentials, which generated bursts and did not depend on axonal 
conduction or chemical synapses. Therefore, bursting involves a spike-dependent, 
positivefeedback mechanism endogenous to single neuroendocrine cells. 

Neuroendocrine cells, whose electri- ing salt and water balance. The cells that 
cal activity causes secretion of peptides secrete vasopressin and oxytocin have 
into the nervous and circulatory sys- been the primary model, particularly in 
tems, are vital in the regulation of such mammals, for electrophysiological ( I )  
diverse bodily functions as  reproduction and biochemical (3) studies of neuroen- 
(I), endocrine control (2), and maintain- docrine systems. In vivo extracellular 
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Fig. 1. (A) Alteration of burst length in a phasic burster by steady changes in membrane 
potential from injected current. Membrane depolarization (trace 1) promoted longer bursts with 
higher spike frequency than observed at resting potential (trace 2). Conversely, membrane 
hyperpolarization caused shorter bursts with lower intraburst spike frequency (trace 3). 
Stronger hyperpolarizing currents (trace 4) blocked the slow underlying depolarization and 
revealed postsynaptic potentials (PSP's) that appeared random. Neuronal input resistance was - 120 megohms. (B) Depolarizing afterpotentials and plateau potentials in two phasic bursters. 
A DAP followed each action potential during the period between bursts. The DAP's could 
summate, leading to a plateau potential (P) and an overriding spike burst. Spike peaks are not 
shown. Input resistance was - 190 megohms (left) and - 200 megohms (right). Small 
depolarizations are excitatory postsynaptic potentials. 
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recordings from single magnocellular 
neuroendocrine cells (MNC's) in the rat 
supraoptic and paraventricular nuclei 
have shown that, under conditions re- 
quiring water conservation, phasic 
bursts of action potentials lead to vaso- 
pressin release (4). A separate popula- 
tion of MNC's bursts synchronously to 
release oxytocin during lactation (5). In- 
tracellular recordings, which are re- 
quired for direct study of the mecha- 
nisms underlying such bursting, have 
been nearly impossible to make from 
mammalian MNC's in vivo. Some mol- 
luscan and crustacean neurons, howev- 
er, are known to undergo slow changes 
in ionic conductances responsible for 
cyclic bursting (6-9). 

We recorded intracellularly from 
MNC's in rat hypothalamic slices and 
found that single action potentials gener- 
ate slow depolarizing afterpotentials 
(DAP's), which can sum to promote a 
long burst. Our data support the long- 
standing hypothesis, arising from studies 
of invertebrates (6-9), that endogenous 
mechanisms generate the spike bursts in 
mammalian MNC's, particularly the pe- 
riodic bursting pattern associated with 
vasopressin release. 

Extracellular recordings from single 
MNC's have shown that phasic bursting 
can occur in hypothalamic slices (10. 11). 
In seven phasic cells we confirmed this 
result with intracellular recording (trace 
2 in Fig. 1A) (12, 13). Phasic bursts, 
comparable to those seen in vivo during 
the release of vasopressin (4), were su- 
perimposed on slow depolarizations. 
When steady depolarizing current was 
injected through the intracellular elec- 
trode, bursts became longer and intra- 
burst spike frequency increased (trace 1 
in Fig. 1A). Steady hyperpolarizing cur- 
rent resulted in shorter bursts of spikes 
with a lower intraburst firing frequency 
(trace 3 in Fig. 1A). Stronger hyperpolar- 
izing currents blocked spontaneous ac- 
tion potentials, eliminated the slow fluc- 
tuations in membrane potential that nor- 
mally underlie phasic bursting, and re- 
vealed that chemical postsynaptic 
potentials occurred randomly (trace 4 in 
Fig. 1A). Therefore, changes in mem- 
brane potential could modify and even 
block bursting. Phasic synaptic poten- 
tials did not appear to cause the phasic 
firing pattern of these seven cells (11). 
Instead, action potentials provided a re- 
generative drive for further firing (6, 7). 
A slow DAP, which was most obvious 
during the period between bursts, fol- 
lowed each spike (Fig. 1B). The DAP's 
could promote burst initiation by sum- 
ming to form a plateau potential. In our 
recordings DAP's and plateau potentials 
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were seen only in impalements of the 
highest quality (12). 

An important observation made previ- 
ously in mammalian MNC's in vivo was 
that antidromic spikes can trigger a sin- 
gle burst (14). This suggested an endoge- 
nous mechanism for burst firing because 
weaker stimuli that activated other neu- 
rons did not cause a burst in the recorded 
cell. We directly corroborated this result 
in four silent MNC's by finding that 
injection of a brief depolarizing pulse to 
elicit spiking could repeatedly evoke an 
afterdischarge that lasted up to 30 sec- 
onds and was superimposed on a sus- 
tained plateau potential (Fig. 2A). The 
long duration of such afterdischarges is 
remarkable and probably results from a 
positive feedback mechanism. That is, 
DAP's sum to form a plateau potential, 
thus increasing the likelihood of further 
spikes and their DAP's, which in turn 
add to the plateau potential and prolong 
the burst. In two silent cells failure of 
this mechanism to terminate after a brief 
intracellular current pulse resulted in fast 
continuous firing. 

Recurrent excitation from axon collat- 
erals may exist in vertebrate hypotha- 
lamic systems (15), and this mechanism 
could contribute to the plateau potential. 
However, bath application of tetrodo- 
toxin, which blocked the fast, presum- 
ably Na+-dependent spikes, had no sub- 
stantial effect on the plateau potential 
after a current-evoked burst (Fig. 2B). 
Typically, a tetrodotoxin-insensitive af- 
terhyperpolarization transiently inter- 

rupted the plateau potential. Because 
axonal spikes are generally thought to be 
Na+-dependent (16), these data for tetro- 
dotoxin-treated cells are evidence that 
recurrent synaptic inputs from axon col- 
laterals do not generate the plateau po- 
tential. Furthermore, the plateau poten- 
tial could still be evoked in a concentra- 
tion of Cd2+ high enough to block 
evoked chemical synaptic potentials 
(Fig. 2C) but too low to affect action 
potential duration or amplitude. There- 
fore the plateau potential does not arise 
from chemical synaptic transmission 
but results from endogenous mecha- 
nisms that are activated in the neuron by 
previous action potentials (17). 

Phasic burst firing could result from 
chemical synaptic input (18) or an endog- 
enous pacemaker potential (19). Howev- 
er, our experiments demonstrate the 
presence of an intrinsic, positive-feed- 
back mechanism that involves progres- 
sive summation of DAP's to form a pla- 
teau potential that sustains the burst. An 
endogenous inhibitory mechanism, prob- 
ably including a Ca2+-activated K +  con- 
ductance, may contribute to burst termi- 
nation (20). Alternation between these 
activity-dependent changes in excitabil- 
ity appear intrinsic to the MNC and can 
shape periodic spike bursts. 

Additional intracellular recordings are 
required to elucidate fully the electro- 
physiological properties responsible for 
bursting, which is associated with en- 
hanced release of hypothalamic neuro- 
peptides. The phasic bursters in this 
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Fig. 2. (A) Burst from a brief injected current pulse. This silent cell fired a 30-second 
afterdischarge after injection of a brief (150 msec) depolarizing current pulse that was 
suprathreshold (arrow). Action potentials rode on a plateau potential (P indicates end of plateau 
potential). Input resistance was - 130 megohms. (B) Persistence of plateau potentials in 
tetrodotoxin (TTX). Despite elimination of presumed fast Na+ spikes during an evoked spike 
train, tetrodotoxin did not block the plateau potential. Inset at upper right shows the same 
response at a slower time scale. Input resistance was - 200 megohms. (C) Persistence of 
plateau potentials during blockade of chemical synaptic transmission with Cd2+. The recorded 
cell was orthodromically stimulated 1 mm dorsal to the supraoptic nucleus. A low concentration 
of Cd2+, which did not alter the action potential wave form, blocked evoked postsynaptic 
potentials (PSP's) even when stimulus strength was doubled (insets on right). However, the 
plateau potential was unaffected. Spike peaks are not shown. Input resistance was - 120 
megohms. Spontaneous postsynaptic potentials in CdZ+ and tetrodotoxin probably represented 
miniature postsynaptic potentials. 
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