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5-Hydroxytryptophan Elevates Serum Melatonin 

Abstract. Daytime administration of 5-hydroxytryptophan to sheep elevated serum 
melatonin more than sevenfold within 2 hours. This suggests that administration of 
5-hydroxytryptophan could be used as the basis of a clinical test o f p i n e d  function 
and that melatonin might mediate some clinical effects of 5-hydroxytryptophan. 

5-Hydroxytryptophan (5-HTP), which 
is used in the treatment of depression 
and myoclonus (I),  is an intermediate in 
the synthesis of N-acetyl-5-methoxy- 
tryptamine (melatonin). The pathway is 
tryptophan -+ 5-HTP -+ 5-hydroxytrypt- 
amine (serotonin) -+ 5-hydroxy-N-ace- 
tyltryptamine (N-acetylserotonin) -+ 

melatonin (2). Melatonin synthesis by 
the pineal gland, which is thought to be 
the major determinant of the concentra- 
tion of circulating melatonin (3), is low 
during the day and increases at night as  a 
result of neural stimulation of the activi- 
ty of serotonin N-acetyltransferase (2). 
Even though 5-HTP has been found to 
cause a small increase in rat pineal mela- 
tonin (4), the role of this precursor in the 
control of melatonin synthesis and serum 
melatonin has generally been ignored. 
We now report that administration of 5- 
HTP to sheep during the day increases 
the concentration of serum melatonin to  
nighttime levels within 2 hours. 

Male sheep that had been housed for 1 
week in a windowless stall with automat- 
ically regulated lighting were intraperito- 
neally injected with tryptophan (500 mgl 
kg), 5-HTP (20 or 200 mgikg), or saline 
(5, 6). Blood samples were obtained at  1- 

hour intervals beginning immediately be- 
fore treatment and ending 5 hours after 
treatment. Serum melatonin was mea- 
sured by radioimmunoassay (7, 8) and 
serum tryptophan by a fluorometric 
technique (9). Statistical analysis was 
done with Duncan's multiple-range test 
(10). 

A diurnal rhythm was seen in the level 
of serum melatonin in saline-treated 
sheep (Figs. 1 and 2) (7,  11). The injec- 
tion of tryptophan elevated serum tryp- 
tophan 10- to  15-fold after 1 to 5 hours 
(12); this caused a very small increase in 
serum melatonin that was significant 
(P < 0.05) only at  2 hours after the injec- 
tion. A tryptophan-induced increase in 
serum melatonin was not detected at  
night (Fig. I).  

In contrast to the weak effect of tryp- 
tophan on serum melatonin, 5-HTP had 
marked effects (Fig. 2). The 5-HTP injec- 
tion (20 or 200 mgikg) caused a statisti- 
cally significant (P < 0.05) increase in 
serum melatonin after 2 to  5 hours. The 
peak of the increase induced by 5-HTP at  
20 mglkg occurred after 1 to  2 hours and 
was more than seven times greater than 
control values. The 200 mgikg dose pro- 
duced a larger and more lasting increase: 
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after 5 hours serum melatonin values 
were more than 20 times greater than 
control values. N o  significant effect of 5- 
HTP treatment was detectable at night, 
when serum melatonin was already ele- 
vated as a result of neural stimulation of 
the pineal gland. One animal died 4 hours 
after receiving the larger dose of 5-HTP. 

The most reasonable explanation for 
the weak effect of tryptophan on serum 
melatonin is that, in sheep, pineal trypto- 
phan hydroxylase is saturated by endog- 
enous pineal tryptophan. This does not 
appear to be the case in the rat, because 

T r y p t o p h a n  (A) 

tryptophan administration increases pi- 
neal serotonin in this species (13). 

We believe that the marked elevation 
of serum melatonin by 5-HTP is due to a 
mass-action effect on the 5-HTP -+ mela- 
tonin pathway in the pineal gland (14); 
the three enzymatic reactions-decar- 
boxylation, N-acetylation, and O-meth- 
ylation-do not seem to be saturated 
during daytime. This is supported by 
three lines of evidence: (i) during the day 
5-HTP increases the level of pineal mela- 
tonin in rats in vivo (4); (ii) monoamine 
oxidase inhibitors, which elevate seroto- 

T r y p t o p h a n  (A) 

C l o c k  t i m e  

Fig. 1. Effect of tryptophan administration on serum melatonin. Each animal was injected 
intraperitoneally with 200 ml of a suspension of tryptophan (500 mglkg) in saline or with saline at 
0700. Blood was collected 10 minutes before the injection and every hour after the injection for 
5 hours. The same protocol was followed at night; treatment was started just before lights out at 
1500. The experiments were done during May and June. Serum melatonin was measured in 
duplicate (7). Data were collected over a 4-week period. Values are means t standard errors 
for three sheep. 

(4 200 m g l k g  (A) 200 m g l k g  

(0) 20 m g l k g  (8) 20 m g l k g  
A 
.p 

,',' , I P., ; : * .  , . ' 1  

,I :' 

Clock t ime 

Fig. 2. Effect of 5-HTP administration on serum melatonin. The protocol described in the legend 
to Fig. 1 was used, except that 5-HTP was injected instead of tryptophan. These experiments 
were done during November and December. The control values are means i standard errors 
for four animals; the experimental values are for individual animals. 

nin, also increase rat pineal melatonin 
(15); and (iii) treatment with 5-HTP (200 
mgikg) elevates sheep pineal serotonin, 
N-acetylserotonin, and melatonin (16). 
The finding that nighttime treatment with 
5-HTP did not produce a marked in- 
crease in the already elevated levels of 
serum melatonin may indicate that at 
night a t  least one step in the 5-HTP -+ 

melatonin pathway is saturated. 
If 5-HTP elevates serum melatonin in 

man, then 5-HTP administration might 
form the basis of a clinical test of non- 
neural pineal function. Such a test could 
indicate the ability of the pineal gland to 
convert 5-HTP to melatonin. With this 
approach it might be possible to identify 
and characterize pineal tumors. In addi- 
tion, the 5-HTP-induced increase in mel- 
atonin might be useful in predicting 
whether patients will respond to 5-HTP 
therapy. 

Some clinical effects of 5-HTP treat- 
ment might be mediated by melatonin. 
Patients receiving 5-HTP during the day 
may have unusually high, perhaps 
"nighttime," levels of serum melatonin 
that would modify or abolish the physio- 
logical melatonin rhythm. Also, individ- 
ual differences in the effectiveness of 5- 
H T P  treatment might be due to individ- 
ual differences in the melatonin response 
to 5-HTP. 
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Lignin-Degrading Enzyme from the 
Hymenomycete Phanerochaete chrysosporium Burds. 

Abstract. The extracellularfluid of ligninolytic cultures of the wood-decomposing 
basidiomycete Phanerochaete chrysosporium Burds. contains an enzyme that de- 
grades lignin substructure model compounds as well as spruce and birch lignins. It 
has a molecular size of 42,000 daltons and requires hydrogen peroxide for activity. 

Lignin biodegradation plays a key role 
in the earth's carbon cycle. Not only is 
lignin the most abundant renewable or- 
ganic material next to cellulose, but it 
also encrusts and, until degraded, pre- 
vents access of degradative enzymes to 
the cellulose and hemicelluloses in 
woody plant tissues (I). Lignin is decom- 
posed preeminently by higher basidio- 
mycetous fungi that cause the white-rot 
type of wood decay (2). 

Past research has shown that oxidizing 
agents with low specificity are involved 
in the biodegradation (3),  but has not 
revealed the nature of these agents. Re- 
cent indirect evidence indicates that non- 
enzyme-bound activated oxygen species 
derived from H202, rather than en- 
zymes, are the actual degradative agents 

(4, 5), and that H202 has a role in lignin 
degradation (4-7). 

Essential to defining the biochemical 
mechanism is the identification of indi- 
vidual reactions of the lignin degradation 
process. Because of the complexity of 
the lignin polymer (Fig. I), lignin sub- 
structure model compounds such as 1,2- 
bis-(3-methoxy -4- ['4~]methoxyphenyl)- 
propane- 1,3-diol (1) and 1-(4-ethoxy- 
3-methoxy[~14~]phenyl)-2-(o-methoxy- 
phenoxy) propane-1,3-diol(2) have been 
used to define specific reactions. Com- 
pound 1 represents the 1,2-diarylpropane 
substructure (Fig. lA), which accounts 
for - 7 percent of the linkages in lignins, 
and 2 represents the arylglycerol-p-aryl 
ether type of substructure (Fig. lC), 
which is the dominant one in lignins, 
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accounting for 50 to 60 percent of the 
interunit linkages (8). The degradative 
pathways of these and related model 
compounds in cultures of the white-rot 
fungus Phanerochaete chrysosporium 
Burds, have been partially elucidated (9- 
12). An oxidative C-C bond cleavage, 
which initiates the degradation of 1 (Fig. 
1A) and related structures in cultures (9- 
11), has been described. We report the 
discovery of an extracellular enzyme 
from Phanerochaete chrysosporium 
which, in the presence of added H202, 
catalyzes that cleavage, not only in 1, 
but also in compound 2 and in spruce and 
birch lignins. 

The enzyme activity was detected by 
incubating 1 (13), in the presence of 
added H202, with the concentrated 
extracellular fluid from 6-day-old lignin- 
olytic cultures (14); this compound (1) 
was cleaved between C-1 and C-2, with 
formation of vanillin methyl ether (3) 
from the C-1 moiety, and 1-(3',4'-di- 
methoxypheny1)ethane-1,2-diol (4) from 
the C-2 portion (Fig. 1A). The 14C-la- 
beled products were extracted and iden- 
tified by coelution, after isolation by 
thin-layer chromatography (TLC), with 
unlabeled standards on TLC plates (15). 
They are the same products formed ini- 
tially in intact cultures (9). Both intact 
cultures (9-11) and the reconstituted sys- 
tem (concentrated culture fluid + H202) 
further cleave the diol product (4) to 
form the aldehyde 3, and both also oxi- 
dize diol4 to ketol5 as a minor reaction 
(Fig. 1A). Thus 3 is produced from both 
aromatic moieties. 

The reconstituted system was active 
also against model compound 2 (16), 
which differs from 1 in having an aryl 
ether rather than an aryl substituent at C- 
2 (Fig. 1C). Like 1, compound 2 is 

+ 
CHO 

OCH, 
0 C ~ H 5  

Fig. 1. A portion of a 
lignin macromolecule 
and substructure model 
compounds 1 and 2. The 
fungal degradation prod- 
ucts are shown. (A) 
Model compound 1. (B) 
Lignin with phenolic hy- 
droxyl groups I4C-meth- 
ylated. Dashed boxes en- 
close the 1,2-diarylpro- 
pane (left) and arylglyc- 
erol-p-aryl ether (right) 
substructures in the lig- 
nin corresponding to 
model compounds 1 and 
2. L, continuation of lig- 
nin polymer. (C) Model 
compound 2. Dashed ar- 
rows indicate sites of C-C 
bond cleavages. Empty 
brackets in (A) and (C) 
indicate unidentified deg- 
radation products. 




