
The nature of the cellular changes re- 
sponsible for this loss is unclear. Possi- 
bly synaptic turnover (the coordinated 
production and removal of synapses) de- 
clines across the juvenile period, leaving 
the older rats with less ongoing growth to 
produce a sprouting response. However, 
there is no necessary reason to assume 
that sprouting represents an exaggera- 
tion of normal synaptogenesis; it may 
require the activation of novel or usually 
quiescent processes. The sudden onset 
of sprouting 5 or 6 days after the lesion 
would not be  predicted from the continu- 
ous growth hypothesis, but can be ac- 
counted for by a modified version of that 
idea-factors are present that prevent 
the expression of growth until 5 days 
after the lesion. 

Whatever the underlying mechanism 
may be, the sharp decline in growth 
responses provides a possible explana- 
tion for age-related changes in recovery 
from brain damage (5, 25). It  will be of 
interest then to assess the rate and de- 
gree of behavioral recovery after com- 
missural lesions in rats of the ages used 
in this study. 
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Sex Change in a Coral-Reef Fish: Dependence of 
Stimulation and Inhibition on Relative Size 

Abstract. The removal of a single dominant individual has been shown to trigger a 
sex change in some coral-reefjsh. In the saddleback wrasse (Thalassoma duperreyj, 
however, female-to-male sex change requires visual stimulation from smaller 
conspecifics. This change is not dependent on the sex or color of the s t imulus j sh  
and can be inhibited by larger conspecifics. On the reef, a female probably changes 
sex when the relative numbers of larger and smaller conspecifics change within her 
home range. 

Social control of sex change in fishes 
has been demonstrated experimentally 
only among harem-living species or 
those with a rigid dominance hierarchy 
(1-3). In such cases sex change usually 
occurs as a simple one-to-one replace- 
ment: loss of the dominant male or fe- 
male induces sex change in the dominant 
fish of the opposite sex. In nonharem 
species with less rigid social and mating 
systems, one would predict socially me- 
diated sex change to be under the control 
of a more flexible mechanism. We report 
that such a mechanism does indeed con- 
trol sex change in Thalassoma duperrey, 
a reef-dwelling wrasse abundant through- 
out the Hawaiian archipelago. This spe- 
cies exhibits protogynous (female to  
male) hermaphroditism, lives in sexually 
integrated, overlapping home ranges, 
and mates promiscuously rather than in a 
harem (4). Sex change in this species is 
not a function of paired replacement of 
dominant individuals. Rather, it is a 
function of the relative sizes of conspeci- 
fics in the social group. Their relative 
numbers on the reef may also be impor- 

tant. Experiments suggest that some 
threshold value of the proportion of larg- 
er or smaller fish within the home range 
probably triggers the initiation of sex 
change in individual females. 

Fish were taken from coral reefs in 
Kaneohe Bay, Oahu, Hawaii, and 
brought immediately to  the laboratory 
where they were held collectively in sea- 
water tables for up to 2 days. During this 
period fish were sexed, weighed, mea- 
sured, and placed individually in isolated 
seawater containers for 1 to 3 days be- 
fore assignment and transfer to  experi- 
mental pens. Pens, made of 12.7-mm 
(half-inch) wire mesh, measured 1 m on 
each side (5) and were submerged at  
fixed positions in a protected lagoon. 
There were no resident T. duperrey in 
the lagoon, which was an inappropriate 
habitat for these fish. 

One to four adult wrasses were placed 
in each pen, with o r  without a barrier to  
separate individuals (Table 1). Small fish 
were 66 to 100 mm, standard length, and 
large fish, 101 to 135 mm. In the experi- 
ment with three fish, the entire size 



range was divided into three parts. When 
two or more wrasses were placed in a 
single pen, a minimum size difference of 
10 mm was initially established. Tactile 
barriers were 12.7-mm wire mesh screens, 
and tactile-visual barriers were double- 
louvered panels that faced in opposite 
directions, allowing water flow but ob- 
structing vision. 

Experiments ran uninterrupted for 3 
months, during which time fish were fed 
freely. Two replicates of each of the 12 
experimental treatments (Table 1) were 
conducted simultaneously and repeated 
every 3 months until a sample size of five 
to nine individuals was reached for each 
treatment. At the end of each test, fish 
were killed and gonads examined histo- 
logically for evidence of sex change. 
Females were considered to have 
changed sex only if their gonads lacked 
intact oocytes and showed advanced 
stages of spermatogenesis. Treatment re- 
sults were compared statistically by the 
Irwin-Fisher exact test, one-tailed (6). 

Experimental treatments 1 to 4 were 
designed to test the effects of absolute 
and relative size as well as social envi- 
ronment on the sex-change process (Ta- 
ble 1). Sex change occurred only in the 
larger individuals of female pairs (the 
number of changes in treatments 3 and 4 
was significantly greater than that in 
treatments 1 and 2, P < 0.001), regard- 
less of absolute size (treatment 3 versus 
4, P = 0.73). It did not occur interspecif- 
ically (treatments 3 and 4 versus 5 ,  
P < 0.01). These results show that sex 
change in one fish must be stimulated by 
the presence of at least one smaller con- 
specific. 

The results of treatment 6 showed that 
the sex-change process is independent of 
the sex of the stimulus fish; smaller 
males were as effective as smaller fe- 
males in inducing sex change (treatment 
6 versus 3 and 4, P = 0.73). Adult wrass- 
es normally undergo a color-phase con- 
version (initial phase to terminal phase) 
that is correlated with a change in 
spawning strategy (4). However, treat- 
ments 7 and 8 suggest that sex change is 
independent of the coloration of the 
stimulus fish (P = 0.23). Tactile cues 
were not needed for sex change to occur 
(treatment 9 versus 3 and 4, P = 0.73), 
but visual cues were crucial (treatment 
10 versus 9, P < 0.01). Placing females 
in an enclosure 12 times larger than the 
standard size showed that. at least within 
this range, sex change was independent 
of the amount of space available to fe- 
males (treatment 11 versus 3 and 4, 
P = 0.37). 

Treatment 12 was designed to test 
whether sex change can be inhibited as 
well as stimulated. A female wrasse po- 

Table l .  Results of sex-change experiments with T. duperrey. Vertical bars represent the 
placement of barriers by fish size and sex. Data on sample size and sex change refer to the 
largest female in each treatment (to the larger female of the pair of females opposite the male in 
treatments 7 and 8 and to the large and medium females in treatment 12). 

Treat- Fish1 
ment pen 

Fish size 
Sam- Sex change 

Sex ~ l e  Per- 
'IZe cent 

None 
None 
None 
None 
None 
None 
Tactile 
Tactile 
Tactile 
Tactile-visual 
None 
Tactiles 

Small 
Large 
Small 
Large 
Varied 
Varied 
Variedl smaller 
Variedl smaller 
Variedl smaller 
Variedl smaller 
Varied 
Largelmediuml small 

F 
F 

F F 
F F 

F + T. ballieui 
F M  

F FIM F* 
F FIM F*t 

FIF 
FIF 
F F 

FlFlF 

*The male fish was at least 10 mm smaller than the larger female across the barrier. ?Differs from 
treatment 7 in that the male is terminal color phase. $Pen size was 12 times larger than in other 
treatments. 

tentially capable of change when placed 
next to a larger female, did not change 
sex even though a smaller female was 
also present. This showed that inhibition 
indeed occurs (treatment 12 versus 9, 
P < 0.001). 

Sex change is socially controlled in T.  
duperrey and is initiated by visual stimu- 
li. As long as the fish is reproductively 
mature, there is no apparent critical size 
at which sex change normally occurs. In 
our experiments, sex change in one indi- 
vidual was stimulated by some aspect of 
the presence of one or more smaller 
conspecifics. Though it did not require 
removal of a male or a larger individual, 
it apparently was inhibited by some as- 
pect of the presence of one or more 
larger conspecifics. Relative size was 
critical to both stimulation and inhibi- 
tion, while coloration and sex apparently 
were not. 

Other hypotheses proposed to explain 
the proximate causes of sex change in 
various fishes are those dealing with 
suppression (I), priming (2), and a sex- 
ratio threshold (2). For T. duperrey, we 
suggest that size ratios, rather than sex 
ratios or loss of dominant individuals, 
may be important proximate cues to indi- 
vidual sex-change candidates. Thalas- 
soma duperrey interact with relatively 
large numbers of conspecifics on a regu- 
lar basis. The relative numbers of larger 
and smaller fish may be the best proxi- 
mate indication of the chances for repro- 
ductive success. If, for example, there 
are many larger fish (usually male) and 
few smaller fish (usually female), there 
would be too few females with which a 
new male could mate. There would also 
be too many larger males competing for 
those mates. If, on the other hand, the 
proportion of larger fish is low, then sex 

Thus in social systems such as that of 
T ,  duperrey, sex change in one-to-one 
correspondence with male loss would be 
too rigid a strategy to follow. The size- 
ratio mechanism provides maximum 
flexibility to individual sex-change can- 
didates in socially variable environ- 
ments. It would appear to operate effi- 
ciently only in fishes with large social 
units, however. Congeneric labrids and 
other labroids that live in overlapping 
home ranges at relatively high popula- 
tion densities may well exhibit such a 
mechanism. The precise role of behavior 
and the specific visual cues involved in 
this mechanism have yet to be deter- 
mined. 
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