
signed-ranks test, N = 9) (Table 1). In 
the final census (August 1980), numbers 
of frogs in control and experimental plots 
differed significantly (P < 0.005 for 
adults; P < 0.05 for all frogs; t-test). Up 
to 46 percent of the houses were occu- 
pied during the day. 

The significant increase in the number 
of preadult frogs supports the assump- 
tion that the increase is intrinsic and is 
not simply the result of a relocation of 
frogs from the surrounding forest. The 
increase in the number of adults in 
houses is an indicator of the growth of 
the previous year's young. Movements 
of ten marked frogs in the River experi- 
mental plot were observed throughout 
one night. The mean maximum distance 
moved from diurnal retreat sites was 200 
cm [standard deviation, 95 cm], indicat- 
ing that the frogs remained in the plot 
during their nocturnal activities. 

Increasing the number of retreat and 
nest sites resulted in a significant in- 
crease in numbers of vreadult and adult 
coqui and their nests. Most studies of 
population regulation have emphasized 
food, predation, or behavioral interac- 
tions as regulators of population density 
(8). We have shown experimentally that 
the number of appropriate retreats and 
nest sites limits population size of E. 
coqui, a terrestrial ectothermic verte- 
brate. 
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Rate of Synaptic Replacement in Denervated Rat Hippocampus 
Declines Precipitously from the Juvenile Period to Adulthood 

Abstract. Synaptic contacts per unit area in the rat dentate gyrus reach adult 
numbers by the end of the first month after birth and remain constant thereafter. This 
experiment demonstrated that the rate at which synapses were replaced by sprouting 
after a lesion declined dramatically from 35 to 90 days of age. Thus, the juvenile 
period of the rat's l f e  is marked by a considerable change in neuronal plasticity. This 
may he related to age-dependent effects in recovery from brain damage. 

Developing neural systems have great 
potential to reorganize, including form- 
ing aberrant fiber tracts, after lesions in 
the perinatal animal (1). With matura- 
tion, lesion-induced neural growth be- 

Fig. 1. Diagrams of the region of the rat 
hippocampal formation sampled for quantita- 
tive electron microscopy. (A) Schematic of a 
section cut at a right angle to the longitudinal 
axis of the hippocampus. Ultrathin sections 
were taken from the region of the dentate 
gyrus shown along the indicated plane. (B) 
The granule cells are located within a discrete 
layer, and their dendrites extend outward into 
a largely cell-free molecular layer. Quantifica- 
tion within the commissural projection to the 
outer half of the inner molecular layer (hatch- 
ing) is consistent across animals (6); this sub- 
field was used in this experiment. 

6 Hippocampal 

comes more restricted and arises primar- 
ily from a limited formation of new syn- 
apses by intact axons in response to 
adjacent axonal and synaptic degenera- 
tion (2). Although the rate of synaptic 
restoration is known to undergo substan- 
tial changes during development (3), 
quantitative comparisons of this variable 
in juvenile and adult animals are lacking. 
Since sprouting is involved in the behav- 
ioral consequences of lesions in the cen- 
tral nervous system (4) ,  changes in the 
speed at which synapses are replaced 
may help explain certain age-dependent 
behavioral effects of brain injury [such as 
acquired aphasia (5)]. We now report 
that reinnervation of the rat dentate gy- 
rus after removal of a major input slows 
considerably during the juvenile period. 

The dentate gyrus of the rat hippocam- 
pal formation contains a population of 
granule cells organized in a horseshoe- 
shaped layer. The dendrites of these 
neurons extend outward and form a ho- 
mogeneous molecular layer (Fig. 1). The 
major inputs to the granule cells arise 
from (i) the entorhinal cortex and (ii) the 
contralateral (commissural projection) 
and ipsilateral (associational projection) 
hippocampus. The hippocampal systems 
occupy the inner third of the dendritic 
field, and the entorhinal fibers the outer 
two-thirds of the molecular layer; the 
projections do not overlap. The simplic- 
ity of these anatomical arrangements has 
made the dentate gyrus a useful system 
for anatomical studies of neuronal plas- 
ticity. 

Commissural axon degeneration, in- 
duced by either removal of the contralat- 
era1 hippocampus (6-8) or contralateral 
cerebral ischemia (9 ) ,  leads to a growth 
response within the inner molecular lay- 
er of the adult rat. Since the commissural 
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projection generates 35 percent of the 
synaptic population within the inner mo- 
lecular layer, synaptic proliferation [pre- 
sumably from the adjacent associational 
axons (6, lo)] is relatively modest com- 
pared with the extensive axonal sprout- 
ing required to replace the extremely 
dense input from the entorhinal cortex 
(11). Commissural lesions. unlike ento- . , 

rhinal lesions (12), cause only minor den- 
dritic pathology and no detectable 
shrinkage of the molecular layer (6), and 
therefore precise electron microscopic 
descriptions of terminal proliferation can 
be made. Accordingly, this procedure is 
well suited for quantitative studies of the 
time course of axonal sprouting. 

The left hippocampus in male rats was 
removed by aspiration 35, 60, 90, and 
180 days after birth (13). The animals 
were killed and the right hippocampus 
prepared for electron microscopy by 
conventional procedures 2, 8, and 15 
days after the surgery. Our previous 
studies in adult animals have shown that 
axonal degeneration is greatest 2 days 
after the lesion is made, and that synapse 
replacement begins in the hippocampus 
approximately 6 to 8 days after deaffer- 
entation, progresses steadily for 1 week, 
and then slows (7). Thus, the survival 
times chosen in this study include one 
time point before and two time points 
after the expected onset of synaptic pro- 
liferation. 

Counts were made of (i) intact boutons 
forming one or more synapses-synaptic 
boutons, (ii) intact boutons making two 
or more synapses-multiple synaptic 
boutons (14, 15), and (iii) degenerating 
(electron-opaque) synaptic boutons. 
Quantification (16) and measurements of 
the height of the commissural terminal 
field and the molecular layer (for possi- 
ble shrinkage) (17) were taken within the 
same septo-temporal, medio-lateral re- 
gion in the dentate gyrus of all animals 
(Fig. I). 

The major results of the experiment 
are shown in Fig. 2. The density of 
synaptic boutons in the control group at 
each age was virtually identical. This 
result agrees with that of a previous 
study showing that the dentate gyrus 
attains an adult complement of synapses 
in the fourth postnatal week (18). The 
loss of synapses measured 2 days after 
the commissural lesion was also not de- 
tectably different among the four groups 
of rats. The replacement of lost contacts 
was progressively and substantially 
slower with increasing age, however. 
The synaptic population almost com- 
pletely recovered to control values by 8 
days in 35-day-old rats, while fewer than 
half of the lost synapses were restored 

Table 1. Degenerating synaptic boutons 
(mean r standard deviation) in the commis- 
sural zone of the dentate gyrus after a com- 
missural lesion at different postnatal ages (26). 
- 

Post- Days after lesion 
natal 
age 

(days) 8 15 

within 15 days in the more mature ani- 
mals. Our earlier work indicates that in 
adult rats a normal synaptic density is 
reached only after 2 months of postoper- 
ative recovery (7). In this study, the 
degree of synaptic reinnervation did not 
differ significantly after lesions at 90 and 
180 days of age, thereby suggesting that 
the rate of sprouting stabilizes in adult- 
hood (19). 

The age-dependent changes are proba- 
bly due to the rate of synapse prolifera- 
tion rather than to the time of its initia- 
tion. This hypothesis is suggested by 
entorhinal lesion studies. which have es- 
tablished that growth and synaptic rein- 
nervation begin no sooner than 5 or 6 
days after lesions in 21-day-old and adult 
rats (20). If so, sprouting was nearly four 
times as fast at 35 days as at 90 days 
during the initial period of synaptic rein- 
nervation (eight synapses per 100 I*m2 
added by day 8 after the lesion in the 
younger rats and two synapses in the 
older groups). 

The rate of sprouting may be linked to 
the rate of degeneration removal (7, 15, 
21). Table 1 shows that degenerating 

endings were indeed eliminated more 
rapidly in the younger animals (3, 22). 
However, while the number of degener- 
ating endings 15 days after the lesion in 
the 90- and 180-day-old groups was 
equivalent to that found 8 days after the 
lesion in the 35-day-old rats, the density 
of intact synaptic contacts was consider- 
ably greater in the younger rats. Thus, 
changes in the rate of degeneration re- 
moval alone cannot account for the de- 
cline in the rate of reinnervation. Never- 
theless, the inverse relationship between 
the persistence of degenerating terminals 
and the speed at which new endings were 
generated by intact axons suggests that 
these variables reflect the same neuronal 
properties. Possibly some fundamental 
aspect of the neuron slowly changes be- 
tween the second postnatal week of life 
and young adulthood and, in doing so, 
alters both the degenerative and growth 
responses of axons (23). 

Our results demonstrate that a sub- 
stantial decline in the rate of sprouting 
occurs during the juvenile period in the 
dentate gyrus of the rat. Previous work 
has focused on neural reorganization in 
immature or adult tissue, where major 
differences exist. When axons are grow- 
ing toward their final destination during 
development, it is not surprising that 
they respond more to a lesion than they 
do in the adult, in which the axons have 
reached their targets. As this study 
points out, however, even within a neu- 
ral system in which axonal ingrowth has 
ceased and a stable density of synaptic 
input has been reached, a progressive 
loss in the rate of synaptic recovery 
takes place with increasing age (24). 

Days a f te r  birth 

Control 2 8 

Days af ter  lesion 

Fig. 2. The effect of a commissural lesion at different postnatal ages on mean number of intact 
synaptic boutons. Standard deviations and number of rats in each group are shown with each 
bar. 
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