
How Does Fluid Flow Become Turbulent? 
Myriad instabilities that precede turbulence in a simple model (Taylor- 

Couette flow) defy understanding 60 years after the first one was found 

How d o  smoothly flowing fluids be- 
come turbulent? The answer affects us  
all-from the seaside poet pondering the 
mysteries of the ocean to the engineer 
planning a pipeline to a passenger travel- 
ing on a jetliner, who wonders why the 
air is always choppiest at mealtimes. A 
workshop held last month in Eugene, 
Oregon, dealing with the flow of liquids 
between concentric rotating cylinders 
(Couette cell) did not come up with an 
answer to  this question.* An important 
reason for the lack of an answer is that 
the mathematical equations that describe 
fluid flow, though well established, defy 
solution outside the smooth laminar flow 
regime, even for the highly symmetric 
Couette cell. 

All is not bleak, however. Theoretical 
and experimental investigations of fluid 
flow in Couette cells have been on a 
rising curve in the last few years, pointed 
out J .  Trevor Stuart of Imperial College 
(London) at the close of the workshop. 
The use of lasers to make accurate mea- 
surements of fluid velocity (laser-Dopp- 
ler velocimetry) and of computers to 
collect and rapidly massage vast 
amounts of data have made more strin- 
gent tests of theory possible. Experimen- 
talists are also finding ways to isolate 
particular aspects of the fluid flow from a 
field of highly complex behavior. Super- 
computers make feasible numerical sim- 
ulation of the nonlinear, partial differen- 
tial Navier-Stokes equations that de- 
scribe fluid flow and provide even more 
grist for the theorists' mills. And most 
exciting of all, the first hard evidence 
was presented that a t  least some transi- 
tions to turbulence may be described by 
relatively simple nonlinear equations 
(with only a few variables) whose solu- 
tions lie on mathematical structures 
called strange attractors. 

The history of Couette flow dates back 
to the tail end of the 19th century and the 
work of Arnulf Mallock in England and 
Maurice M. Couette in France. These 
investigators measured the viscosity of 
water and other liquids in a cell compris- 
ing two concentric cylinders. Liquid be- 
tween the cylinders flows azimuthally 
(that is, in a circle around the axis of the 
cylinders) when one or  both of them is 
rotated. Both scientists noticed that the 
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fluid flow becomes unstable as  its veloci- 
ty increases, but Couette got his name on 
the apparatus. 

A major event in understanding the 
Couette cell was Sir Geoffrey Taylor's 
1923 discovery of the nature of this insta- 
bility. Taylor quanti.tatively showed the- 
oretically and verified experimentally 
that the instability set in at  particular 
values of the rotational speeds of the 
inner and outer cylinders that depended 
on their dimensions and the viscosity of 
the fluid. The instability consists of the 
formation of a stack of toroidal vortices 
like doughnuts around a pole. The net 
fluid motion in these Taylor vortices, as  
they are now known, is a helical super- 
position of the azimuthal Couette flow 
and the circular flow around the axis of 
the vortex. The direction of the latter 
flow alternates from vortex to  vortex, so 
that at one boundary between vortices 
(the inflow boundary) fluid rushes to- 
ward the inner cylinder, whereas at the 
next (the outflow boundary) it rushes 
toward the outer cylinder. 

The Couette problem is 
of far wider interest than 

it might first appear. 

An interesting feature of Taylor vorti- 
ces is that they never form if only the 
outer cylinder rotates. Moreover, they 
form most easily if only the inner cylin- 
der rotates. In the latter case, as the 
inner cylinder rotates, it drags nearby 
fluid with it and spins it away. Fluid 
initially near the outer cylinder rushes in 
to fill the "vacuum," thereby initiating 
the vortex flow. However, if only the 
outer cylinder rotates, fluid near the out- 
er wall is accelerated outward. Since 
there is no place for this fluid to  go, 
nothing happens, just as  people in the 
spinning barrel a t  a carnival are pressed 
against the wall before the bottom of the 
barrel drops away. 

Although the general nature of Taylor 
vortices is known, most details are not, 
because there is no exact solution to the 
Navier-Stokes equations. Taylor's cal- 
culations involved making perturbations 
of laminar Couette flow that were small 
and linearizing the equations. H e  deter- 

mined at what cylinder speed the vorti- 
ces came into existence by observing 
when the perturbations grew in size (lin- 
ear  stability analysis). 

One outstanding issue is the diameter 
of the vortices. The nai've expectation is 
that the diameter is the same as  the 
distance between the two cylinders, and 
indeed this is what linear stability analy- 
sis predicts a t  the critical inner cylinder 
speed for the onset of vortices. Howev- 
er ,  experiments and calculations since 
Taylor's day agree that for cylinder 
speeds above the critical value, the di- 
ameter of the vortices in the direction of 
the axis of the cylinders can be larger o r  
smaller. If there is a range of allowable 
diameters when the cylinder speed ex- 
ceeds the critical value, how does the 
flow choose which one to assume? Last 
year, Lorenz Kramer, Eshel Ben-Jacob, 
and Helmut Brand at the Institute for 
Theoretical Physics in Santa Barbara, 
and Michael Cross of Bell Laboratories 
addressed part of this problem. They 
calculated that in systems, such as 
Couette cells, under conditions where 
part of the system was below the critical 
value for the formation of periodic spa- 
tial patterns, such as  Taylor vortices, 
and part was above, the resulting pattern 
would have only one repeat distance or 
wavelength. An additional stipulation 
was that the spatial transition from be- 
low to above critical conditions must be 
very gradual. If it is too abrupt, a band of 
wavelengths appears. 

This work brings up the important 
point that the Couette problem is of far 
wider interest than it might first appear. 
Its well defined and highly symmetric 
geometry provides a test-bed for the 
solution of nonlinear equations in gener- 
al. Kramer and his colleagues, for exam- 
ple, were interested in the problem of 
pattern selection that is described by 
nonlinear equations in several contexts. 
An especially important one is the for- 
mation of dendritic, snowflake-like pat- 
terns under certain conditions when rnol- 
ten metals freeze and crystallize. 

In the present case, the theoreticians 
found that if the wavelength is deter- 
mined uniquely anywhere in the system, 
then it is determined everywhere. Since 
it is fixed at  the critical condition, this 
criterion is satisfied. The precise value of 
the wavelength could be calculated when 
the form of the transition from sub- to 
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supercritical conditions was specified 
and not too complex. 

Their calculation was partially verified 
by the experiments of David Cannell, 
Marco Dominguez-Lerma, and Giinter 
Ahlers of the University of California at 
Santa Barbara. These physicists devised 
a Couette cell such that the outer cylin- 
der was tapered over part of its length. 
The result of the tapering was that the 
distance between the two cylinders was 
too small to support Taylor vortices at 
the bottom of the Couette cell but was 
well above the size needed to allow their 
formation at the top. 

With a very gentle taper, the experi- 
menters found that a single vortex diam- 
eter occurred in the straight section of 
the cell and that it was always equal to 
the distance between the cylinder walls. 
With a more severe taper, they found 
that a small range of vortex diameters 
was possible. However, the diameters 
actually chosen depended on the length 
of the cylinders. At a given length, only 
one diameter ever appeared. As the 
length increased, the wavelength would 
rise and fall repetitively with a period 
equal to twice the separation between 
the cylinder walls. In contrast to the 
theory, the investigators found that the 
range of allowable diameters decreased 
very rapidly as the speed of the cylinder 
increased. 

A second issue relates to the effects of 
the ends of the Couette cell on the over- 
all pattern of Taylor vortices. Vortices at 
the ends of a Couette cell form at lower 
cylinder speeds than those in the center, 
for example. The issue arises because 
most theoretical work has treated mathe- 
matically convenient cells of infinite 
length, whereas experiments necessarily 
involve shorter lengths. One obvious so- 
lution (subject to technical limitations) is 
to make cells very long, a few meters, in 
relation to the cylinder separation of a 
centimeter or less. 

In 1981, Kwangjai Park, Gerald Craw- 
ford, and Russell Donnelly of the Uni- 
versity of Oregon suggested that the 
problem was more complicated than 
this. The Oregon investigators measured 
the difference in the critical cylinder 
speed for the onset of Taylor vortices as 
the cylinder speed was increased from 
below and decreased from above the 
critical value (hysteresis). From the mea- 
sured hysteresis at different acceleration 
(ramping) rates, with different cell 
lengths and cylinder spacings, and with 
fluids of varying viscosity, they conclud- 
ed that the characteristic time for a fluid 
to settle was proportional to the length of 
the cell, thereby limiting the maximum 
useful cell length to that dictated by the 
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The phorograph shows a side- 
view of a srack of Taylor vor- 
tices wirh traveling waves on I 

them. Dark lines are ourflow 
boundaries and bright lines 
are inflow boundaries. Be- 
cause of rhe lighring, rhe in- 
flow boundary shows up only 
in alternating pairs. [Source: 
Harry Swinney, University of 
Texas] 

patience of the observer. A cell only 20 
centimeters long with a cylinder spacing 
of 0.8 centimeter filled with water takes 
about 1 day to reach the steady state. 
Any flow patterns observed before that 
are transients, argue the Oregon group. 

This interpretation remains controver- 
sial, but it seems to leave experimenters 
in a pretty pickle because long cells with 
presumably negligible end effects are not 
practical to study and short cells have 
large enough end effects that comparison 
with theory should be difficult. The spirit 
of the workshop was, to paraphrase sev- 
eral participants: "For 60 years experi- 
mentalists have been trying to devise 
experiments that fit the theory. Now it is 
time for theorists to model realistic, 
short cells." Some theorists, such as T. 
Brooke Benjamin of Oxford University 
have been complying with this request 
for some time. 

However, there are more complex 
flow patterns than Taylor vortices await- 
ing attention. From Taylor's time on- 
ward, researchers observed that increas- 
ing the cylinder speed much beyond that 
for the onset of Taylor vortices intro- 
duced a transition to the wavy mode. 
One can imagine that either the inflow 
boundary, the outflow boundary, or both 
oscillate as one proceeds in the azimuth- 
al direction around the cylinders. For a 
stationary wave, this pattern would re- 
main fixed in place, but most wavy 
modes are traveling waves, so that the 
oscillation travels azimuthally in time 
(see photo). The number of waves or 
periods in a mode can vary, but there is 
always an integer number, starting with 1 
at the lowest cylinder speed. At faster 
speeds, the number of waves first in- 
creases to as many as ten then decreases 
to as many as three. 

From the discussion so far, one would 
not expect to be able to specify only the 
geometry of the Couette cell and the 
speeds of the cylinders and thereby to 
dictate which wavy mode would appear. 
Indeed, in 1965, Donald Coles of the 
California Institute of Technology dem- 
onstrated that as many as 26 distinct 
spatial states (combinations of the num- 
ber of Taylor vortices, which ranged 
from 18 to 32, and the number of travel- 
ing waves on each of them, which varied 
from 3 to 7) could occur for a single 
cylinder speed. At the workshop, Coles 
renewed an old challenge. He would give 
to anyone who could explain it a three- 
dimensional model depicting the allowed 
combinations of vortices and waves as a 
function of cylinder speed that he made 
in 1%8. 

Donnelly listed several other features 
of wavy mode flow that the theorists 
have been unable to model accurately. 
The onset of wavy modes occurs at 
higher cylinder speeds in short cells than 
in long ones of the same cylinder spac- 
ing. And, as the cylinder speed rises and 
more waves are generated, the number 
of Taylor vortices decreases at certain 
speeds. Finally, there are defects in the 
wavy modes that can arise, persist indef- 
initely, and move about. For example, 
two Taylor vortex pairs carrying waves 
can merge into one pair while a third 
vortex pair divides into two. Computer 
simulation of the Navier-Stokes equa- 
tions may be able to provide additional 
help, but realistic simulations seem to 
require access to a supercomputer. 

Philip Marcus of the Massachusetts 
Institute of Technology has access to the 
National Center for Atmospheric Re- 
search's Cray supercomputer, which is 
used there for the modeling of the earth's 
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atmosphere. Marcus explained at  the 
workshop that numerical simulation lies 
somewhere between theory and experi- 
ment. Simulation itself provides no ex- 
planation for what is calculated but can 
give theorists leads as  to where interest- 
ing and feasible analyses might be. 

Marcus uses what those in the trade 
call a pseudospectral technique. The so- 
lution to  the Navier-Stokes equations is 
a velocity field that gives the three com- 
ponents of the fluid velocity at  each 
point in space and at  successive times. 
The velocity field is approximated by a 
truncated polynomial series with 33 
terms for the radial dependence of the 
velocity, 32 terms for the azimuthal ve- 
locity, and 32 terms for the axial veloci- 
ty. Spectral refers to  the Fourier trans- 
form of the resulting equations. One out- 
come of this procedure is that the partial 
differential equations are  converted into 
a set of ordinary difference equations 
that can be integrated on a computer. 
Pseudospectral means that some steps in 
the integration are carried out in the real 
coordinate system rather than in the 
Fourier transform coordinate system. In 
the end, Marcus obtains the velocity 
field on a grid of 33 by 32 by 32 points. 

One result already turned in indicates 
that the resulting simulation of wavy 
modes is right on track. Marcus calculat- 
ed the speeds of the waves and com- 
pared them with those recently mea- 
sured by Gregory King, Ying Li, Wai 
Lee, and Harry Swinney of the Universi- 
ty of Texas at  Austin. In three different 
combinations of cylinder speed and vor- 
tex diameter, the agreement between ex- 
periment and simulation was within 0.1 
percent. The simulations also suggest a 
physical mechanism for the formation of 
wavy modes. The first mode obtains its 
energy by breaking up the strong fluid jet 
that builds up at  the outflow boundary 
due to the faster Taylor vortex flow at  
higher driving cylinder speeds. Con- 
versely, the flow in normally isolated 
vortices is strongly mixed at  the inflow 
boundary where the jet is weaker (see 
figure). 

The simulation was, however, for an 
infinitely long Couette cell and a certain 
adjustment had to be made to relate the 
simulation to the experiment with a finite 
cell length. Asked from the floor at  the 
workshop when the method could be 
applied to  simulate end effects in long 
cells, Marcus estimated 5 to 10 years. 
Part of the problem is the computational 
resources needed to simulate a complex 
system. Improved simulation techniques 
and cheaper computing may make the 
end-effect simulation affordable in the 
stated time period. Marcus says it now 

takes about 1 hour to  d o  a simulation, 
but the time scales with the square of the 
speed of the rotating cylinder. 

Wavy modes are not the end of the 
story. As the cylinder speed in a Couette 
cell rises further, modulated wavy 
modes appear. The 1975 discovery of 
these modes at  the City College of the 
City University of New York by Jerry 
Gollub of Haverford College and the 
University of Pennsylvania and Swinney 
popularized the use of laser-Doppler ve- 
locimetry in time-dependent fluid-flow 
research. By measuring the frequency 
shift of laser light that is scattered after 
being focused onto a small volume of 
moving fluid, one can determine the ve- 
locity of the fluid very accurately. In 
experiments of this type, Gollub and 
Swinney observed four distinct flow re- 
gimes when they made Fourier trans- 

Computer simulation 

The Jigure shows a two-dimensional projec- 
tion of the three-dimensional velocity field of 
a wavy mode. The horizontal axis is radial 
and runs from the inner to the outer cylinder. 
The length of the vertical axis is that of one 
vortex pair. [Source: Philip Marcus, Massa- 
chusetts Institute of Technology] 

forms of the velocity over a certain time 
interval. In the Taylor vortex (time-inde- 
pendent flow), there was no structure in 
the spectrum. At the onset of wavy 
modes, there was a single sharp peak at  a 
particular frequency (and multiples o r  
harmonics of the fundamental frequen- 
cy) that corresponds to  the speed of the 
traveling wave. As the cylinder speed 
increased still further, they observed a 
second fundamental frequency in the 
Fourier spectrum. Wavy modes with two 
frequencies are now termed modulated 
wavy modes. 

Subsequent experiments at  Texas cul- 
minated in the report last year by Rob 
Shaw of the University of California at  
Santa Cruz, David Andereck of Texas, 
Leslie Reith of Bell Laboratories, and 
Swinney that definitively established 
that the second frequency belonged to a 
second traveling wave with the same or  a 
different number of waves as  the first but 
a different speed. A key part of the 
investigation was taking movies of the 
flow with a camera mounted on a rotat- 
ing table. By adjusting the table speed to 
match one or  the other of the waves, one 
can unravel their behavior. 

Many physicists have found the most 
interesting feature of Gollub and Swin- 
ney's report to  be the fourth regime, the 
turbulent state at  the highest cylinder 
speeds. In the turbulent state, the Fouri- 
er spectrum is dominated by noise. U p  to 
that time, the prevailing line of thinking 
started from the conjecture of the late 
Soviet physicist Lev Landau that there 
would be an infinite succession of transi- 
tions, with each transition accompanied 
by the addition of a new frequency to the 
Fourier spectrum. A noisy, turbulent 
state would never occur, whereas a suc- 
cessively more complicated but still peri- 
odic one would. 

The direct transition from two fre- 
quencies to turbulence tied in nicely with 
ideas circulating among physicists, 
mathematicians, and others that turbu- 
lence in fluids might be one of many 
behaviors that could be determined by 
mathematical objects with the name 
strange attractors. Turbulence might be 
one example of a more general phenome- 
non called chaos (Science, 5 November 
1982, p. 554). The notion is an enticing 
one partly because, rather than having to 
contend with a velocity field with a very 
large number of components, it would be 
possible to study the transition to turbu- 
lence with nonlinear equations having 
onlv a small number of variables. Sever- 
al experiments have since produced evi- 
dence that some geometrically con- 
strained fluids behave in accordance 
with models of chaos, but until recently, 
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no strange attractors were deduced from 
experimental data. Anke Brandstater 
and Swinney at Texas have now done 
this for Couette flow. 

Attractors are the general name for the 
steady-state trajectory of a dynamical 
system. In the case of a fluid, the trajec- 
tory at each point in time is described by 
the values of the components of the 
velocity field at each point in space, a 
very large number of variables. For Tay- 
lor vortex flow, the attractor is a single 
point in this multidimensional space be- 
cause the flow is time-independent. For 
wavy modes, the attractor is a closed 
loop formed as the velocity oscillates 
between the maximum and minimum 
values during the passage of a wave. For 
a type of flow with two frequencies simi- 
lar to modulated wavy modes (quasi- 
periodic flow), the attractor is a torus. 
One frequency corresponds to motion 
around the major axis of the torus, and 
the other corresponds to motion around 
the minor axis. Motion on a strange 
attractor, which has a complex shape, is 
unpredictable, giving a noisy Fourier 
spectrum in the turbulent regime. 

It is clearly impractical to construct a 

trajectory for a real fluid. But theorists 
have shown that an equivalent can be 
made much more simply by measuring 
the velocity, at a single location in the 
fluid. A point in the trajectory at time t is 
defined by the velocity at this location at 
times t ,  t + T ,  t + 27, t + 37, and so on. 
A practical limit to the number of multi- 
ples of T needed is reached when the 
form of the trajectory fails to change 
with the addition of more terms. 

With the aid of extremely accurate 
laser-Doppler velocimetry measure- 
ments, the Texas researchers were able 
to construct trajectories at different val- 
ues of the cylinder speed. The trajector- 
ies had an important feature that branded 
them as belonging to a strange attractor. 
Trajectories starting from almost identi- 
cal but slightly different initial points 
diverge exponentially on a strange at- 
tractor. This behavior is measured by a 
parameter called a Lyapunov exponent, 
whose value must be positive. From the 
experimental data, Alan Wolf and Jack 
Swift of Texas, calculated a positive 
Lyapunov exponent whose value in- 
creased as the cylinder speed rose. 

Another important characteristic of 

strange attractors is that their dimension 
need not have an integer value. Swinney 
told the workshop that Doyne Farmer 
and Erica Jen of the Los Alamos Nation- 
al Laboratory have used the Texas data 
to calculate the dimension of the strange 
attractor. They found it to be small in 
accordance with chaos models and to 
vary continuously from 2 to 4 over the 
range of cylinder speeds studied. 

There is as yet no specific chaos model 
that applies to Couette flow, but theo- 
rists are said to be working on one. 
Moreover, at a NATO advanced re- 
search workshop at Haverford College in 
early June, Pierre Berg6 and Monique 
DuBois of the French Nuclear Studies 
Center in Saclay and George Buzyna and 
Richard Pfeffer of Florida State Univer- 
sity presented evidence for strange at- 
tractors in other fluid systems.? 

All in all, if the transition to turbulence 
remains a murky topic for the moment, 
fluids researchers seem to have more 
promising leads than they have had in 
quite a w h i l e . - - A ~ ~ ~ u ~  L. ROBINSON 

tNATO Advanced Research Workshop on Testing 
Nonlinear Dynamics, Haverford College, Haver- 
ford, Pennsylvania, 6 to 9 June 1983. 

An Early Glacial Two-Step? 
The most recent ice age seems to have exited in two steps, the earlier one 

perhaps coming sooner than had been thought possible 

When the end of the last ice age came 
more than 10,000 years ago, it came 
quickly. After 100,000 years of gradual 
accumulation from winter snows, ice 
piled as high as 3000 meters over Cana- 
da, Greenland, and northern Europe 
wasted away to nearly nothing in only 
a few thousand years. This suddenness 
has been an awkward problem for geolo- 
gists, a problem complicated by the re- 
cent detection of an apparent pause in 
the disintegration of the great ice sheets. 
But new evidence suggests that the first 
step of deglaciation, the one before the 
pause, may have been driven largely by 
forces other than the gradual warming of 
the climate. 

Scientists generally agree that the ulti- 
mate cause of the end of the last ice age 
was changes in the orbit and the axial tilt 
of Earth, the Milankovitch or orbital 
variations that seem to pace the comings 

summer on the Northern Hemisphere, 
where most of the ice to be melted was 
located, so that by 17,000 years ago solar 
insolation conditions resembled those of 
today. By 11,000 years ago, summer 
insolation on Northern Hemisphere ice 
sheets peaked at a level no more than 9 
percent higher than today's. The timing 
of that peak nicely fit geological evi- 
dence from the continents and isotopic 
evidence from the deep sea for the oc- 
currence of the maximum rate of ice 
sheet disintegration at about 11,000 
years ago. The strongest sunshine melt- 
ed the ice the fastest, or so it seemed. 

Nothing is that tidy anymore. Jean- 
Claude Duplessy of the National Center 
for Scientific Research, Gif-sur-Yvette, 
France, and colleagues there and at the 
University of Bordeaux have concluded 
from their oxygen-isotope study of deep- 
sea sediments from the Bay of Biscay, 

have melted much ice. Further compli- 
cating matters, melting of the ice sheets 
appeared to pause between 13,000 and 
10,000 years ago, just when the fastest 
melting had been deduced from earlier 
studies. A second episode of melting 
apparently led to the present volume of 
ice by about 6000 years ago. A similar 
study of equatorial Atlantic sediments 
presented at a recent meeting* in Airlie, 
Virginia, by Alan Mix and William Rud- 
diman of the Lamont-Doherty Geologi- 
cal Observatory also found two steps in 
the deglaciation. The second step (10,000 
to 8,000 years ago) coincided with Du- 
plessy's, but the first came between 
13,000 and 11,000 years ago. Despite 
their disagreement on timing, these two 
studies convinced most of those at the 
Airlie meeting that something slowed or 
stopped the disintegration of the ice 
sheets at the least likely time. 

and goings of the ice ages (Science, 21 south of the English Channel, that at 
*Conference on the Timing and Mechanism of the 

January, p. 272). Orbital variations pro- least one-third of the ice melted between Last Deglaciation, held at Airlie House, Virginia, 2 
duced a smooth increase in the solar 16,000 and 13,000 years ago. That was to6May;WilliamRuddiman,Lamont-DohertyGeo- 

logical Observation, and Jean-Claude Duplessy, 
energy Or i n ~ ~ l a t i ~ n  falling during the long before increasing insolation could CNRS, Gif-sur-Yvette, France, cochairmen. 
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