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The Hall effect is one of the better 
understood physical phenomena and is 
widely used in semiconductor materials 
laboratories to determine the carrier con- 
centration of a given specimen. A mag- 
netic field of moderate strength, an elec- 
tric current supply, and a voltmeter are 
sufficient to perform combined Hall and 
resistivity measurements, which can 
yield direct information on the basic 
electrical properties of a new material. 
From an effect seemingly so well under- 
stood and a measurement as routinely 
performed as this, one hardly expects 
any surprises. And yet, less than 3 years 
ago, a startling observation created a 
new interest in the physical principles 
underlying the Hall effect. Von Klitzing 
et al. (I) discovered that under certain 
conditions the Hall resistance of their 
specimen was surprisingly constant, and 
its magnitude coincided with the ratio of 
two fundamental physical constants to 
any accuracy to which they were able to 
measure the effect (see Fig. 1). The Hall 
resistance RH (see Fig. 2) was found to 
be quantized to 

where h is Planck's constant, e is the 
electronic charge, and the quantum num- 
ber i (= 1,2,3, . . .) is the number offully 
occupied quantum energy levels (the 
Landau levels). This result not only at- 
tracted the attention of solid-state physi- 
cists, experimentalists as well as theo- 
rists, but also stirred much interest in 
disciplines as distant from solid-state sci- 
ence as elementary particle physics. It 
presents the possibility of a quantum 
resistance standard in terms of funda- 
mental physical constants and also a new 
method for determining the fine struc- 
ture constant, which is a measure of the 
coupling between elementary particles 
and the electromagnetic field. The fine 
structure constant, a ,  can be related to 
the quantized Hall resistance by 

where po is the permeability of the vacu- 
um and by definition equals 4 7  x 

Him. Since the light velocity, c, is 
known very precisely, the quantized 
Hall effect immediately spurred specula- 
tions that it could provide a new solid- 
state determination of a with an accura- 
cy higher than that of previous determi- 
nations. At this time an accuracy of 1.7 
parts in lo7 has already been achieved 
(2). This is comparable to the accuracy 
of earlier measurements based on differ- 
ent physical phenomena, and further im- 
provement is expected. 

dimensional electron system, and its fun- 
damental properties have been studied 
extensively during the past two decades. 
The quantized Hall effect was first ob- 
served in such a device. 

More recently, a new structure be- 
came feasible which, in various respects, 
has proved to be a superior host material 
for two-dimensional electrons (3). The 
structure is called a modulation-doped 
GaAs-(A1Ga)As heterojunction, and it is 
prepared by a highly sophisticated crys- 
tal growth technique termed molecular 
beam epitaxy (4). It resembles the metal 
oxide semiconductor structures, but in 
this case the electron gas exists at the 
highly perfect interface between two 
crystalline semiconductors. The GaAs- 
(A1Ga)As interface provides a much 
smoother background for the in-plane 
motion of the electrons. Furthermore, 
the binding electric field is not estab- 
lished by an external voltage, as in the 

Summary. Quantization of the Hall effect is one of the most surprising discoveries in 
recent experimental solid-state research. At low temperatures and high magnetic 
fields the ratio of the Hall voltage to the electric current in a two-dimensional system is 
quantized in units of h/e2, where his Planck's constant and e is the electronic charge. 
Concomitantly, the electrical resistance of the specimen drops to values far below the 
resistances of the best normal metals. 

The quantized Hall effect is observed 
under conditions that are uncommon 
compared to those of standard Hall mea- 
surements. Magnetic fields of approxi- 
mately 100 kilogauss and temperatures 
close to absolute zero are required. The 
specimen, too, is exceptional. It contains 
a so-called two-dimensional electron 
gas, which is ultimately responsible for 
the occurrence of this new quantum ef- 
fect. The active region of all metal oxide 
semiconductor field-effect transistors 
(MOSFET's) consists of such a two- 
dimensional electron gas. In these sys- 
tems the carriers are confined to a very 
narrow region at the interface between 
two different materials; they are able to 
move freely along the plane of the inter- 
face but lack any degree of freedom 
normal to it. Being confined to a narrow 
well of approximately cm, they are 
quantum mechanically bound to the in- 
terface. In Si-MOSFET's, the two-di- 
mensional electron gas exists at the in- 
terface between a slab of crystalline sili- 
con and a thin (- cm) amorphous 
silicon dioxide top layer. The carriers are 
kept at the interface by a strong electric 
field established by an external voltage 
(gate voltage) applied to a metal elec- 
trode (gate) which covers the oxide. The 
Si-MOSFET is the most common physi- 

MOSFET but is generated internally 
through positively charged centers with- 
in the (A1Ga)As. Shortly after the dis- 
covery of the quantized Hall effect in Si- 
MOSFET, the same phenomenon was 
observed in GaAs-(A1Ga)As structures 
by Tsui and Gossard (5) (see Fig. 3). The 
effect could be observed at higher tem- 
peratures and lower magnetic fields, 
making the experimental requirements 
less stringent than in the case of the Si- 
MOSFET. Hence a good fraction of 
present studies are performed on GaAs- 
(A1Ga)As materials. 

Apart from high-precision measure- 
ments of RH, a considerable amount of 
experimental and theoretical work (6-14) 
has been devoted to unraveling the phys- 
ical principles underlying the phenome- 
non. The most startling recent observa- 
tion concerns the resistivity of the speci- 
men under study. It is found that, under 
conditions where the Hall resistance is 
quantized to any of its values RH = hi 
ie2, the resistivity p,, (see Fig. 2) of the 
two-dimensional electron gas appears to 
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vanish as the temperature is lowered. 
Two-dimensional resistivities as low as 
< 5 x lo-' ohm per square, equivalent 
to three-dimensional resistivities of 
< 5 x ohm-centimeter have been 
reported at 1.23 K (7). This value is 
almost ten times lower than the resistiv- 
ity of any nonsuperconducting material 
at any temperature, and it drops further 
when the temperature is reduced. Ex- 
trapolation to zero temperature indicates 
that a two-dimensional electron gas in a 
suitably high magnetic field is resistance- 
less; it represents an ideal electrical con- 
ductor, very similar to a superconductor, 
yet the phenomenon is caused by a com- 
pletely different mechanism. 

The beauty of the quantized Hall effect 
is that it represents the observation of 
such a fundamental relation in a field of 
physics seemingly so well understood. 
With a superficial glance at the system 
and a minimal understanding of two- 
dimensional transport, one may at first 

think the effect falls right into place. But 
there are many hidden complications 
that turn the quantized Hall effect into a 
scientific puzzle. Indeed, the recent dis- 
covery of fractional quantization with 
i = 113 and 213 defies theoretical expla- 
nation. In order to transmit some of 
the flavor of this puzzle, we start with 
a classical description to clarify some 
aspects of the problem and then discuss 
the effect in the case of integral quantiza- 
tion. 

The Classical Two-Dimensional 

Electron Gas 

The motion of electrons in crossed 
magnetic and electric fields evades intu- 
ition. In order to illustrate some of their 
properties, we consider the geometry 
shown in Fig. 4. The motion of the 
electrons is restricted to the x-y plane 
without friction or scattering. In the ab- 

sence of an electric or magnetic field, all 
electrons move in straight lines in the 
plane, and since the direction and the 
speed are completely random, there is no 
net electrical current. This monotonous 
situation changes the moment an electric 
field E is applied to the system. If E is 
pointed in the negative x direction in the 
plane, each electron will accelerate in 
the positive x direction and, in the ideal 
frictionless case, will speed up indefi- 
nitely. In real systems, electrons are 
scattered by imperfections or vibrations 
of the atoms, leading to a motion analo- 
gous to that of a particle in a viscous 
fluid. After a very short initial accelera- 
tion time, the system approaches a 
steady state with a constant drift veloci- 
ty, vD, which for small E is proportional 
to E. The resulting current density is 
given by j = e n v ~ ,  where n  is the aver- 
age number of electrons per unit area. In 
macroscopic terms, the relation between 
E and j is characterized by either the 

Si-Si 13 2 

10 2 0  
Gate vokage Vg (V) 

Hall resistance 
V H  -W'EH RH = - --= 
I w . j  PXY 

Resistivity 

Magnetic field B (kG) 

Fig. 1 (top left). The quantized Hall effect in a Si-MOSFET (1) in 
which the electron density is varied by a gate voltage V,. Instead of 
being a smooth curve, the Hall resistance RH develops plateaus 
having values h/iez, where i is an integer, and the resistance R, of the 
specimen drops to very low values. Fig. 2 (bottom left). Schemat- 
ic representation of a Hall experiment. The magnetic field B is 
perpendicular to the plane of the specimen and to the current I. The 
Hall resistance RH and the resistivity p,, are determined through the 
equations shown in the figure. Fig. 3 (above). The quantized Hall 
effect in GaAs-(A1Ga)As heterojunctions (5). The electron density is 
fixed and the magnetic field is swept to exhibit the effect. At the arrow 
at 84 kG, p,, is < 5 x lo-' ohm/O. 
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conductivity u or the resistivity p of the 
system through j = UE and p = l lu.  The 
transport coefficient u is given by u = 

envD/E = enk ,  where the mobility, 
p = vD/E,  describes the degree to which 
the carriers are able to move through the 
system. 

Adding a magnetic field B to the sys- 
tem changes the situation considerably. 
In the absence of E, a B field in the z 
direction-that is, perpendicular to the 
electron plane-exerts a constant force 
F = evB on an electron traveling with 
speed v .  The direction of this Lorentz 
force is perpendicular to the direction of 
motion of the electron and perpendicular 
to the direction of B .  As a result, the 
electron executes a rotating motion in 
the plane on a circle with a radius 
r = mvleB, where m is its mass, and with 
a frequency (the cyclotron frequency) 
w, = vlr = eBlm. Since the B field does 
not change the speed of the electrons, 
their energy remains independent of B 
and can be expressed as E = 112mwzr2. 
Thus. an ideal two-dimensional electron 
system in a magnetic field can be visual- 
ized as a system of electrons rotating 
with a constant frequency w, around the 
field lines on circles having radii propor- 
tional to the speed of the electrons (Fig. 
5 )  

The addition of an electric field E 
affects the electron system quite differ- 
ently than in the absence of B. Instead of 
drifting along the x direction, the carriers 
move in the direction that is perpendicu- 
lar to the E and B fields-the y direction 
(Fig. 6). Each electron keeps rotating 
while the center of its rotation is drifting 
aside. This, again, is a result of the 
Lorentz force: the E field accelerates the 
electron in the x direction while the B 
field deflects the motion into the y direc- 
tion. In contrast to the ideal frictionless 
case in the absence of B,  the carriers are 
not accelerated indefinitely. The centers 
of their orbits move with a constant 
velocity v~ = EIB parallel to they direc- 
tion. Therefore, the entire electron sys- 
tem drifts aside with a constant velocity 
in the direction perpendicular to E and B,  
representing a constant current in the y 
direction. The current density is given by 
j = e n v ~  = enE1B. However, the cur- 
rent and the electric field are not parallel, 
as in the absence of a magnetic field, but 
perpendicular to each other. The current 
parallel to the E field is zero. 

A description of this behavior in mac- 
roscopic terms, which requires two inde- 
pendent transport coefficients, leads to 
some surprising results. The conductiv- 
ity, u,,,, describing the current density 
along the electric field is zero. However, 

Fig. 4. Schematic of an ideal two-dimensional 
electron system where the electrons with ran- 
dom speed and direction are confined to move 
in the x-y plane. 

the resistivity, pxx ,  defining the electric 
field strength along the current path also 
vanishes, since there is no E-field com- 
ponent along the current. We encounter 
an exceptional situation where the con- 
ductivity and the resistivity vanish 
simultaneously. This striking result is 
induced by the magnetic field, which 
diverts the current from the direction of 
the applied electric field. In other words, 
the current and the electric field are 
mutually orthogonal and the conduction 
is free from dissipation. The Hall con- 
ductivity, a,, and the Hall resistivity, 
p,,, relating E and j through j = ux,E or 
E = px,j, are given by 

and 

B 
Pxy = - ne 

We note that in two dimensions RH is 
identical to p,, and RH = pxl, = Blne 
(see Fig. 2). 

The Hall conductivity ux, and resistiv- 
ity pxy are unusual in that they relate 
current in one direction with an electric 
field pointing perpendicular to it. The 
usual parallel conductivity u,,, and resis- 
tivity pxx vanish completely. This last 
fact has important conceptual conse- 
quences. If we consider the x direction 
alone our system is an insulator since, in 
spite of the application of an electric 

Fig. 5. Classical mo- 
tion of a two-dimen- 
sional electron sys- 
tem with a magnetic 
field (B)  normal to the 
plane. The energy of 
the carriers is unaf- 
fected by the field and 
remains r = 112 mv2; 
hence all energies are 
possible. 

field, there is no current flow along this 
direction. On the other hand, if we con- 
sider the y direction, the system should 
be termed an ideal conductor. Although 
a constant current is flowing, no electric 
field along this direction is necessary to 
support it and consequently, as in a 
superconductor, no dissipation of elec- 
tric power accompanies the steady cur- 
rent. However, one cannot be too sur- 
prised about this result since the ideal 
model system excluded any kind of fric- 
tion. Even in the absence of a magnetic 
field, such a system would appear to be 
without dissipation. In real systems, 
where electrons scatter at vibrating at- 
oms or imperfections of the material, 
leading to a finite amount of friction, the 
values for uxx and pxx generally deviate 
from zero. However, we will find that 
this ideal case can be realized in real 
two-dimensional systems under certain 
conditions. 

Introduction of Some Quantum 

Mechanics 

The inhibition of electron scattering in 
a real two-dimensional system in a high 
magnetic field is due to principles that 
are beyond our classical description. 
They require the introduction of some 
fundamental rules of quantum mechan- 
ics. The laws of quantum mechanics will 
not only bring about vanishing resistance 
of a real two-dimensional system in a 
magnetic field, but will also be responsi- 
ble for the discontinuous behavior of the 
transport coefficients u,,, and px, that led 
to the observation of the quantized Hall 
resistance and, in turn, to the high-preci- 
sion determination of the fine structure 
constant. The following paragraphs in- 
troduce the quantum mechanical rules 
that are pertinent to the problem of elec- 
trons in a magnetic field. 

The fundamental difference between a 
quantum mechanical and a classical 
treatment of an electron in a magnetic 
field is that only a discrete set of orbits is 
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accessible to the electron in the former 
case. Electrons can occupy only discrete 
states with well-defined discrete ener- 
gies. The allowed radii for electron orbits 
in a magnetic field are the so-called Lan- 
dau radii 

where h is an abbreviation for h l 2 ~  and 
the quantum number 1 can be any posi- 
tive integer 1 = 1,2,3 . . . (see Fig. 7). 
Since their orbits are quantized, the en- 
ergies of the electrons form a sequence 
of Landau levels, given by 

where wc=eB/m is the cyclotron fre- 
quency. 

Finally, electrons have to obey Pauli's 
exclusion principle that no two electrons 
can agree in all their quantum numbers. 
The exclusion principle in effect limits 
the number of electrons per unit area 
that can occupy each Landau level. This 
number is the degeneracy of each Lan- 
dau level and is given by 

At very low temperatures electrons 
will occupy the allowed states with the 
lowest energy. In a given magnetic field 
a system of two-dimensional electrons 
with density n will arrange itself in the 
following way. Of the n electrons per 
unit area, s will occupy the energetically 
lowest Landau level 1 = 1, each having 
an energy €1 = 112hwc and an orbit with 
a radius rl = ( h l e ~ ) " ~ .  The same num- 
ber s will occupy the next higher level 
1 = 2, having energies €2 = 312hwc and 
radius r2 = (3hIe~)"~ .  Loosely speak- 
ing, they form a second layer, although 
they actually reside within the same 
plane and "layer" is to be understood in 

energetic terms. All electrons can be 
accommodated by filling consecutive 
Landau levels. The last level generally 
will remain partially unoccupied since n 
generally is not an integral multiple of 
the degeneracy s. The Fermi energy ( E ~ )  

is the energy of the last electron accom- 
modated in the system at absolute zero 
temperature. It may be regarded as the 
energy that divides the filled and the 
empty levels of the system. 

The important point to notice is that, 
in distributing the electrons over the 
levels, an abrupt break occurs whenever 
one Landau level is completely filled. 
This is due to the fact that an additional 
amount hw, of energy is required to 
accommodate each electron in the next 
higher level. In the region where an 
integral number 1 of Landau levels is just 
filled (n = 1 .  s = 1 eB1h) a slight varia- 
tion of n (or B) will drastically change 
the energy of the system. These jumps 
in energy, which do not occur in a classi- 
cal treatment, have important conse- 
quences for the scattering of electrons in 
a real two-dimensional system, where a 
finite amount of scatterers is always 
present. 

Electron Scattering in a 

Quantized System 

An electron encountering any kind of a 
defect center will be scattered out of its 
orbit (initial state) into a new orbit (final 
state) and may lose or gain energy in the 
process. Such a scattering event can 
occur only if empty orbits are available 
for the electron to be scattered into. In 
our quantized two-dimensional system, 
since electrons can only assume discrete 
energies E, = (1 - 1/2)hwC, energetic ex- 
change between scatterers and electrons 
is limited to multiples of hw, (for inelas- 

tic events) or 0 (for elastic events). At 
low temperatures and high magnetic 
fields, when the Landau level splitting 
hw, vastly exceeds all thermal energies, 
only elastic events, scattering of elec- 
trons among orbits within the same Lan- 
dau level, are feasible. The scattering is 
therefore limited by the number of empty 
orbits within the same Landau level. 

Total suppression of scattering occurs 
when all orbits of the occupied Landau 
levels are completely filled and all higher 
Landau levels are completely empty- 
that is, when the Fermi energy resides 
somewhere within the gap between two 
subsequent Landau levels. In this case 
no scattering can take place, since the 
empty orbits in the higher Landau levels 
are inaccessible to electrons in the com- 
pletely filled Landau levels. Therefore, 
the complete occupation of an integral 
number of Landau levels leads to vanish- 
ing electrical resistance. We emphasize 
that the realization of this zero resistance 
does not require the absence of scat- 
terers within the two-dimensional sys- 
tem, it requires the absence of possibili- 
ties for the electrons to scatter. In this 
way, the real two-dimensional system 
mimics the ideal model system, creating 
a state with vanishing resistance, 
pxx = 0, in spite of the existence of scat- 
terers. 

In certain respects this zero-resistance 
state is similar to superconductivity. In 
both cases it is the existence of a finite 
gap in the energy spectrum, with all 
states below the gap occupied and all 
states above the gap unoccupied, which 
leads to vanishing electrical resistance. 
Nevertheless, the gaps are of very differ- 
ent origin, and various properties, like 
magnetic field exclusion in superconduc- 
tors and the existence of the quantized 
Hall effect in two-dimensional systems, 
are not common to both phenomena. 

Fig. 6 (left). Classical motion of carriers of a two-dimensional electron 
system in crossed magnetic (B) and electric ( E )  fields. While rotating, 
the carriers drift into the direction normal to B and normal to E ,  giving 
rise to a current density j = enEIB in they direction. Fig. 7 (right). 
Quantum mechanical motion of carriers of a two-dimensional electron 
system in a perpendicular magnetic field B. Only certain orbits and 
their energies are allowed, as given in Eas. 5 and 6 in the text. (Radii 
with 1 > f a r e  omitted for clarity.) 
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Integral Quantization of the 

Hall Resistance 

We have seen that, because of the 
discrete nature of its quantum mechani- 
cal energy spectrum, a real two-dimen- 
sional electron system can behave as our 
ideal classical model system. It can carry 
an electrical current without dissipation 
(that is, p,, = 0) when an integral num- 
ber, i ,  of Landau levels are completely 
filled. Under this condition, the total 
density of electrons has to remain 
n = is = i  eB/h, where s = eB/h is the 
degeneracy of each Landau level. The 
Hall resistance RH, which in two dimen- 
sions is the same as the Hall resistivity 
p,,, is then given by RH = p,, = h/ie2, 
exactly as observed experimentally by 
Von Klitzing et al. (1) and Tsui et al. (2). 

However, our discussion, which is 
based on a perfect two-dimensional sys- 
tem, also precludes the experimental ob- 
servation of this quantum phenomenon. 
It does not provide the means to keep the 
filled Landau levels completely occupied 
for an extended range of either the elec- 
tron density or the magnetic field, which 
is necessary for an experimental obser- 
vation in the form of Hall plateaus (see 
Figs. 1 and 3). Interestingly, the exis- 
tence of imperfections in the samples is 
essential for the observation of the quan- 
tized Hall effect. 

Imperfections in the two-dimensional 
system give rise to the states that can 
trap electrons. The trapped electrons do 
not contribute to the electrical current 
and are referred to as localized elec- 
trons, setting them apart from the cur- 
rent-carrying delocalized electrons. De- 
pending on the strength of the localizing 
potential, the energies of localized elec- 
trons deviate more or less from the quan- 
tized energies of the delocalized elec- 
trons and consequently are found some- 
where within the gap region between the 
Landau levels. The modified energy 
spectrum of a real two-dimensional sys- 
tem therefore consists of Landau levels 
representing the delocalized orbits and a 
broad distribution of localized orbits fill- 
ing the gaps in between (see Fig. 8). The 
existence of localized orbits buffers the 
abrupt jumps of the Fermi level from one 
Landau level to the next which would 
occur in the absence of these gap states. 
As long as a variation in density or in 
magnetic field adds electrons to or sub- 
tracts electrons from consecutive local- 
ized orbits, the Fermi energy resides 
within the gap region between Landau 
levels and the number of delocalized 
orbits remains unaltered for an extended 
range of electron density or magnetic 
field. Since only delocalized orbits con- 

Number of electrons 

tribute to the electric current, the trans- 
port properties of the system remain 
constant as long as EF resides in the gap, 
leading to the occurrence of plateaus in 
p,, and zero in p,. In this sense it is the 
imperfection of a real two-dimensional 
system which brings about the plateaus 
as a signature of the quantized Hall ef- 
fect. 

However, this scenario is unable to 
account for the high accuracy to which 
the values of the plateaus are quantized. 
Since a given fraction of the carriers are 
localized, the density of delocalized elec- 
trons is diminished accordingly and the 
number of current-carrying electrons in 
each Landau level deviates considerably 
from its ideal value of s = eB/h. Hence 
p,, is expected to deviate accordingly 
from its quantized value p,, = h/ie2. 

Some light was shed on this puzzling 
situation by Prange (8) and Aoki and 
Ando (9),  who calculated the current of 
an ideal two-dimensional system in a 
magnetic field containing an isolated 
scatterer which traps one electron, 
thereby removing it from the current- 
carrying electrons. They obtained the 
startling result that the remaining elec- 
trons make up in current for the localized 
electron, which they skirt, by increasing 
their own velocity. The situation is anal- 
ogous to the flow of an incompressible 
fluid circumventing an obstacle and in- 
creasing its speed at the position of the 
bottleneck in order to keep the current 
constant (15). 

Fig. 8 (left). Energy spectrum of a two-dimensional 
electron system in a perpendicular magnetic field 
including electron localization. The energies of 
localized orbits (on short lines) are found in the 
gaps between Landau levels (long lines). The Fer- 
mi energy EF resides between Landau levels. 
Fig. 9 (right). Geometry for Laughlin's gedanken- 
experiment. The two-dimensional electron system 
forms a cylinder. A strong magnetic field B pierces 
it everywhere normal to its surface. A current I 
circles the loop, giving rise to a Hall voltage VH 
and a small magnetic flux Q along the axis of the 
cylinder. 

Laughlin's Explanation 

A very elegant gedankenexperiment 
by Laughlin ( lo) ,  which was extended by 
Halperin (II) ,  treats the quantized Hall 

effect from a very general point of view 
and arrives at the correct answer, inde- 
pendent of the physical details of the 
system. Their gedankenexperiment re- 
quires the notion of gauge invariance, a 
physical symmetry beyond common in- 
tuition, and we will outline the basic 
ideas underlying their arguments. 

Laughlin based his consideration on 
an unusual, but feasible, geometry (see 
Fig. 9). The two-dimensional electron 
system is bent to form a cylinder whose 
surface is pierced everywhere by a 
strong magnetic field B normal to the 
surface. An arbitrary current I is as- 
sumed to circle the loop. As described 
earlier, the action of the magnetic field 
on the charged carriers gives rise to a 
voltage VH perpendicular to the cur- 
rent-that is, from one edge of the cylin- 
der to the other. As a result of this 
circulating current, a small magnetic 
field threads the current loop, giving rise 
to a magnetic flux @ through the cylin- 
der. The aim of the gedankenexperiment 
is to establish the relation between I and 
VH . 

To determine I, we use an electromag- 
netic equation 

which relates I to the total energy, U ,  of 
the electronic system, which is free of 
dissipation, and the magnetic flux, @, 
piercing the current loop. The value of I 
can then be established by a slight varia- 
tion, 6@, of the magnetic flux and simul- 
taneous determination of the change in 
the total electronic energy, 6U,  of this 
system. The carriers are separated into 
two distinct classes: localized electrons, 
which are excluded from the transport of 
current, and delocalized electrons, 
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which encompass the loop. The two 
groups react quite differently to 6@. Lo- 
calized electrons remain totally unaffect- 
ed, as one would expect, since there is 
no change in magnetic field at their posi- 
tions and they do not enclose any frac- 
tion of @. Delocalized electrons, which 
enclose @, experience the flux change 
and generally do change their energy. 

Since 6@ is too small to transfer elec- 
trons between Landau levels, its only 
effect is to move the electron orbits of 
the same Landau level within the surface 
of the cylinder. Any motion in the direc- 
tion of the external electric field E estab- 
lished by the potential drop VH will 
modify the electron energy by some 
amount 6 U .  To determine the actual 
value of 6 U ,  Laughlin noticed that after 
the magnetic flux @ is varied by a finite, 
though exceedingly small, amount of a 
flux quantum, A@ = hie, all electron or- 
bits of the system are identical to those 
before the flux quantum is added. The 
distribution of electrons among the or- 
bits might have changed during the pro- 
cess-for instance, electrons might have 
moved into other orbits, leaving empty 
orbits behind, or several electrons might 
have exchanged positions. Nevertheless, 
the orbits available to the carriers before 
the flux change are identical. For the 
general case of an arbitrary magnetic 
field, the change in orbit occupation is 
unknown and the evaluation of AU infea- 
sible. 

However, an exceptional situation de- 
velops when the Fermi level, EF, resides 
within the unaffected localized states. In 
this case, all delocalized orbits of all 
Landau levels below EF are completely 
filled, and excitation into a next higher 
Landau level is impossible because of 
the large amount of energy, ho,, re- 
quired for such a transition. Since all 
accessible delocalized orbits were occu- 
pied before the addition of A@, all acces- 

sible delocalized orbits are occupied af- 
ter the addition of A@, and all orbits 
before and after the change coincide, the 
total energy U of the system has to 
remain unchanged and AU = 0. Howev- 
er, since one is unable to trace the mo- 
tion of the electrons during the flux in- 
crease, one has to allow for the possibili- 
ty that an integral number of electrons 
were transferred through the system dur- 
ing the flux change, entering the cylinder 
at one edge and leaving it at the opposite 
edge, without knowing their actual path. 
This electron transfer is the only way in 
which the highly degenerate two-dimen- 
sional electron system can vary its elec- 
tronic energy. Moving from one edge of 
the cylinder to the other through the 
electrostatic potential VH, an electron 
changes its energy by eVH. If i electrons 
are transferred, the total change of the 
electronic energy is AU = ieVH, 
i = 0,1,2,3, . . . . Returning to Eq. 5 and 
replacing the infinitesimal quantities by 
their finite equivalents, we find the cur- 
rent to be 

AU ieVH ie2 I=--=- 
A eih = hVH (9)  

and the Hall resistance, RH = VHiI, giv- 
en by Eq. 1. Halperin (1 1) later identified 
the value of i as the number of occupied 
Landau levels. 

The preceding discussion represents 
the present understanding of the origin of 
the quantized Hall effect. It shows that 
the existence of localized states is essen- 
tial for the experimental observation. It 
is remarkable that a high-precision mea- 
surement should require the physical 
system to be imperfect, that the accura- 
cy of quantum electrodynamics can be 
tested by an experiment resting on the 
localized states in a disordered system, 
and that the absence of electrical resis- 
tivity can be a consequence of the exis- 
tence of imperfections. 

Fractional Quantization 

Very recently, investigations of GaAs- 
(A1Ga)As heterostructures in magnetic 
fields as high as 200 kG and temperatures 
as low as 0.5 K revealed new surprises. 
In the so-called extreme quantum limit, 
when only the lowest Landau level is 
partially occupied, the quantum phe- 
nomena discussed above should not be 
present. Nevertheless, it has been dis- 
covered (16) that p,, vanishes and p,, is 
quantized in units of hie2 when occupa- 
tion of the lowest Landau level is 113 and 
213. This fractional quantization of the 
Hall resistance-that is, RH = hiie2 with 
i = 113 and 213-differs from the integral 
quantization in that it is observable at 
lower temperatures and higher magnetic 
fields and is more pronounced in samples 
with higher electron mobility. These fea- 
tures suggest that the effect is more 
fundamental, and the search for an ex- 
planation of it is currently an active area 
of solid-state research. In short, the puz- 
zle of the quantized Hall effect has not 
yet been entirely put together. 
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