nol is substituted for Dibal in step (ii), followed by deprotection. This results in the complete epimerization of the C(2)center (7), and provides L-altrose (17)

The sequences leading to the other hexoses have also been carried out satisfactorily in the manner described above for L-allose and L-altrose (12). All steps in Fig. 2 except for the step $9 \rightarrow 13$ proceed with remarkable regio- and stereoselection. Since the mirror image of every compound in Fig. 2 can be prepared by simple exchange of the chiral ligand (tartrate ester) in the AE reaction, the formal synthesis of the D-hexoses has also been achieved. Thus, our twocarbon extension methodology has proved to be generally applicable and efficient in controlling stereochemistry in the construction of acyclic, polyhydroxylated carbon frameworks.

> Soo Y. Ko ALBERT W. M. LEE SATORU MASAMUNE* LAWRENCE A. REED, III **K. BARRY SHARPLESS*** FREDERICK J. WALKER

Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139

References and Notes

- 1. This report is part 5 in a series on the synthesis of saccharides and polyhydroxylated natural products. For part 4, see L. A. Reed, III, Y. Ito, S. Masamune, K. B. Sharpless, J. Am. Chem.
- Soc., in press. 2. R. L. Whistler and M. L. Wolfram, Eds., Methods in Carbohydrate Chemistry Press, New York, 1962), vol. 1.
- J. K. N. Jones and W. A. Szarek, in *The Total* Synthesis of Natural Products, J. ApSimon, Ed. (Wiley, New York, 1973); S. Coffey, Ed., Rodds Chemistry of Carbon Compounds (Elsevier, New York, 1976).
 T. Katsuki and K. B. Sharpless, J. Am. Chem.

- T. Katsuki and K. B. Sharpless, J. Am. Chem. Soc. 102, 5974 (1980).
 T. Katsuki, A. W. M. Lee, P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, D. Tuddenham, F. J. Walker, J. Org. Chem. 47, 1373 (1982).
 A. W. M. Lee, V. S. Martin, S. Masamune, K. B. Sharpless, F. J. Walker, J. Am. Chem. Soc. 104, 3515 (1982); N. Minami, S. S. Ko, Y. Kishi, *ibid.*, p. 1109.
 See Lee et al. (6). Although the hydrolysis with epimerization of the 4-carbon Pummerer prod-uct proceeds ranidly. completely. and in excel-
- uct proceeds rapidly, completely, and in excel-lent yield, some complications are observed in the 6-carbon case. In general, this hydrolysis with epimerization proceeds in somewhat lower yield, primarily due to instability and difficulties with isolating the partially hydrated aldehyde product. The epimerization, however, proceeds to give an isomer ratio of > 95:5 in all these 6carbon cases
- Available from Aldrich Chemical Co
- See Lee et al. (6) and references cited therein Treatment of epoxy alcohol 2 with 0.5 (2.5 equivalents) in t-butyl alcohol followed by slow addition of thiophenol (1.2 equivalents) in moist *t*-butyl alcohol and subsequent trapping of the primary epoxide by thiolate anion lead to the 2.3-diol.

Treatment of the newly formed diol with 2methoxypropene in the presence of a catalytic amount of camphorsulfonic acid provides 3 in 71 percent overall yield with a 4:1 selectivity. S. Iriuchijima, K. Maniwa, G. Tsuchihashi, J. Am. Chem. Soc. 96, 4280 (1974).

10

- 11. Attempts to deprotect the L-altrose derivative with trifluoroacetic acid, followed by catalytic hydrogenation, invariably gave 1,6-anhydro- β -L-altropyranose, which is known to exist in acid solutions in equilibrium with the free sugar [S. Peat, in Advances in Carbohydrate Chemistry, W. W. Pigman and M. L. Wolfram, Eds. (Academic Press, New York, 1946), vol. 2, p. 38]. Exposure of commercially obtained D-altrose to acid also produced the 1,6-anhydro- β -D-altropyranose, which upon acetylation proved identical to the synthetic peracetylated B-L-1,6-anhydro derivative. All eight synthetic L-hexoses had identical mo
- 12 bility on thin-layer chromatographic plates and had identical 270-MHz nuclear magnetic resonance (NMR) spectra in D₂O (except for slight differences) as commercially obtained samples of the D- or L-hexoses. In addition, all eight

aldehydes (16 to 23 in Fig. 2) were reduced and successfully transformed into their corresponding peracetylated hexitols, six out of the seven (altrose and talose give the same hexitol) of which were previously known. The synthetic hexitol acetates were judged on the basis of infrared spectra, NMR, melting points, and opti-cal rotation (where applicable) to be identical with the naturally derived materials. This transformation unequivocally confirms the stereo-chemistry of the critical C(2) through C(5) cen-ters. We were, however, unable to obtain satisfactory optical rotations for several of the synthetic L-hexoses, due primarily to the inac-curacies associated with weighing small quantities of hydrated samples. These results will be reported in full elsewhere.

We are grateful to the National Institutes of Health (grant GM 31124) and to the National Science Foundation for financial support. High-13 resolution mass spectra were provided by a facility supported by the National Institutes of Health (grant RR 00317).

8 November 1982

Hemoglobin in a Nonleguminous Plant, Parasponia: **Possible Genetic Origin and Function in Nitrogen Fixation**

Abstract. A dimeric hemoglobin was purified from nitrogen-fixing root nodules formed by association of Rhizobium with a nonleguminous plant, Parasponia. The oxygen dissociation rate constant is probably sufficiently high to allow Parasponia hemoglobin to function in a fashion similar to that of leghemoglobin, by oxygen buffering and transport during symbiotic nitrogen fixation. The identification of hemoglobin in a nonlegume raises important questions about the evolution of plant hemoglobin genes.

In higher plants, hemoglobin is generally thought to occur only in the nitrogen-fixing root nodules of legumes (1). Because the structure of legume hemoglobin (leghemoglobin) genes is very similar to that of animal globin genes, it has been suggested that the gene for leghemoglobin was transferred to legumes from another eukaryote outside the plant kingdom, relatively recently in

Fig. 1. Preparative-scale isoelectric focusing of oxyhemoglobin (Oxy Hb) from P. andersonii nodules and leghemoglobin (Lb) from cowpea [Vigna unguiculata (L.) Walp.] nodules, both inoculated with Rhizobium strain CP283 and grown as previously described (3). Focusing was performed at 4°C in a 100-ml gel slurry bed of Ultrodex (LKB) containing 0.5 percent Ampholine (LKB) (pH 4.0 to 6.0) and 1.5 percent Ampholine (pH 5.0 to 7.0) (14). The gel plate was loaded with approximately equal amounts of the total hemoglobin purified by Sephacryl S200 chromatography from Parasponia and cowpea nodule extracts. Isoelectric points, measured at 4°C, are marked.

evolutionary history (2). We report that hemoglobin also occurs in the nitrogenfixing root nodules of Parasponia, a member of the Ulmaceae. This plant is nodulated by strains of Rhizobium that also nodulate certain members of the Leguminosae (3).

The absorption spectra of Parasponia nodule segments are consistent with the presence of hemoglobin (4), and this Parasponia hemoglobin may be purified from nodules extracted under strict anaerobic conditions that prevent tannin formation and hemoglobin degradation. Fresh nodules from Parasponia andersonii Planch, infected with Rhizobium strain CP283 (3), or nodules frozen in liquid N₂ were dropped into the steel chamber of an Omnimixer (Sorvall) containing four volumes of extraction buffer [50 mM potassium phosphate (pH 7.2), 1mM EDTA, 4 percent soluble polyvinylpyrrolidone (Kollidon 25, BASF), and 0.1 percent sodium dithionite (Fluka)] equilibrated with pure CO. The mixture was ground at full speed under CO for 2 minutes at 0°C, then centrifuged under CO at 100,000g for 60 minutes at 0°C. The yield of crude carboxyhemoglobin was 45 to 70 nanomoles per gram of Parasponia nodule tissue (5). Anaerobic chromatography on a column of Sephacryl S200 (Pharmacia) equilibrated with CO-saturated 50 mM potassium phosphate and 0.1 mM EDTA (pH 7.2) at 0°C

27 MAY 1983

was used to separate Parasponia hemoglobin from remaining impurities that could cause polyphenol oxidation. Deliberate exposure of this chromatographed product to air at 0°C caused the slow conversion of Parasponia carboxyhemoglobin to oxyhemoglobin without appreciable production of ferric hemoglobin. Final purification was achieved by preparative-scale isoelectric focusing (Fig. 1). This produced a single major component of oxyhemoglobin having an isoelectric point of 6.28 at 4°C and a much smaller amount of ferric hemoglobin with an isoelectric point of 6.67. Figure 1 also shows that leghemoglobin, prepared in the same way from cowpea nodules induced by the same Rhizobium strain, CP283, is focused as a group of several oxygenated and oxidized species with isoelectric points between 4.6 and 4.8. No trace of Parasponia hemoglobin is detectable from cowpea nodules, or vice versa. This result indicates that the plant host has some control over the

Fig. 2. Absorption spectrum of pure ferric hemoglobin from P. andersonii nodules. Oxyhemoglobin in 0.1M potassium phosphate (pH 6.8) was oxidized with a 20-fold excess of potassium ferricvanide immediately and chromatographed at 0°C on a long, narrow column of Sephacryl S200 equilibrated with the same buffer. This procedure re-

Fig. 3. Absorption spectra of pure ferrous hemoglobin (dotted line), oxyhemoglobin (continuous line), and carboxyhemoglobin (dashed line) from nodules of P. andersonii. Ferric hemoglobin in 0.1M potassium phosphate (pH 6.8) was converted to ferrous hemoglobin by the addition of sodium dithionite under argon. Oxyhemoglobin was prepared by running this

ferrous hemoglobin (under argon) into a column of superfine Sephadex G25 (Pharmacia) equilibrated with air-saturated 0.1M potassium phosphate and 1 mM EDTA (*p*H 6.8) at 0°C. Carboxyhemoglobin was prepared by equilibrating ferrous hemoglobin with CO and passing it through a similar column equilibrated with CO-saturated buffer. Spectra were recorded as for Fig. 2.

types of hemoglobin that are produced in nodules infected with *Rhizobium* strain CP283.

It is possible that, in vivo, Parasponia hemoglobin is tightly bound to the Rhizobium bacteroid surface, and this may have been the reason for our inability to detect it in a previous investigation (1). If insoluble polyvinylpyrrolidone (Polyclar AT, GAF), which appears to be as effective as soluble polyvinylpyrrolidone (Kollidon 25) in suppressing polyphenol oxidation, is substituted for Kollidon 25 in our extraction procedure, then almost all Parasponia hemoglobin is found in the bacteroid pellet and not in plant cell debris, plant membrane fragments, or the supernatant. Davenport (6) reported the presence of an "insoluble" hemoglobin in nitrogen-fixing root nodules containing actinomycetous endophytes. One of us (J.D.T.) confirmed these observations with segments of nodules from several plant families (4, 7), and we have been able to extract "soluble" hemoglo-

moved residual Ampholine as well as ferri- and ferrocyanides. Hemoglobin concentration was determined by the pyridine hemochrome procedure (8), and spectra were recorded at 20° C in a Hitachi–Perkin-Elmer model 557 spectrophotometer interfaced with a PDP 11/03 computer and a HP 7221B plotter. E(m*M*) is the millimolar extinction coefficient.

bin from *Casuarina cunninghamiana* Miq. nodules by isolation procedures similar to that outlined above (7).

Parasponia hemoglobin, purified by isoelectric focusing (Fig. 1) appeared homogeneous when subjected to sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis; it contained only one subunit type of $\sim 21,000$ daltons. Pyridine hemochrome analysis (8) of lyophilized, salt-free Parasponia hemoglobin showed the presence of 1 mole of protoheme per 22,000 g of protein (equivalent to one heme per subunit). On the other hand, chromatography on calibrated columns of Sephacryl S200 under nondenaturing conditions indicated an apparent molecular weight of 25,000 to 40,000 for Parasponia hemoglobin, depending on concentration, valence, and ligand state. This suggests that the functional protein is a readily dissociable dimer. In contrast, SDS-polyacrylamide gel electrophoresis or Sephacryl S200 chromatography showed cowpea leghemoglobin to be a 16,000-dalton monomer.

The absorption spectrum of pure Parasponia ferric hemoglobin is shown in Fig. 2. The predominance of hemichrome bands at 560 and 529 nm over charge-transfer bands at 620 and 484 nm (9) and the temperature sensitivity of the spectrum identify Parasponia hemoglobin as a thermal equilibrium mixture of low-spin and high-spin species. In ferric leghemoglobins similar thermal equilibrium mixtures have been recognized (1, 9, 10). As with leghemoglobin (1, 9), reduction of Parasponia mixed-spin ferric hemoglobin by dithionite produces a highspin ferrous hemoglobin structure, judged by its optical spectrum (Fig. 3). Equilibration of Parasponia ferrous hemoglobin with CO or O₂ (the latter in the strict absence of dithionite) caused rapid formation of carboxyhemoglobin and oxyhemoglobin, respectively (Fig. 3). Exposure of oxyhemoglobin to excess CO caused rapid and complete formation of carboxyhemoglobin with an O₂ dissociation rate constant (k_{OFF} , O₂) of ~ 0.3 sec^{-1} , and exposure of carboxyhemoglobin to excess O₂ caused slower but complete formation of oxyhemoglobin (k_{OFF} , CO, ~ 0.006 sec⁻¹). These observations of reversible oxygenation, and those of nodule slices (4), confirm the nature of the new hemoprotein as an O₂ carrier rather than a peroxidase, because in peroxidase simple replacement of O2 by CO cannot occur (11). At pH 6.8 and 20°C, the O₂ OFF rate constant ($\sim 0.3 \text{ sec}^{-1}$) of Parasponia oxyhemoglobin is about one-thirteenth that of oxyleghemoglobin, but probably is still sufficient to allow Parasponia oxyhemoglobin to function

in the facilitated diffusion of O_2 to the Parasponia bacteroids (12).

We are interested in the three-dimensional structure, amino acid sequence. and gene structure of Parasponia hemoglobin, and are attempting to purify Casuarina hemoglobin. If these proteins and leghemoglobin have overall homology of their folded structures and amino acid sequences and also have the same gene structure, including the "ancient" central intron (13) already identified for leghemoglobin (2), then ancient hemoglobin genes may have survived in many (or all) higher plant families. Invocation of a recent act of horizontal gene transmission may be unnecessary (2). On the other hand, if the three proteins show overall structural homology but differences in gene structure, then more than one event of horizontal gene transmission might have occurred. Another possibility is that differences in protein and gene structure will be sufficient to require the invocation of convergent evolution.

The identification of hemoglobin in Parasponia nodules and probably in actinomycetous nodules (7) suggests that an O₂ carrier protein might be a necessary part of plant nitrogen fixation symbioses. This finding, and knowledge of plant hemoglobin gene evolution, should influence the strategy of those wishing to achieve nitrogen-fixing Rhizobium symbioses with nonleguminous plant families.

CYRIL A. APPLEBY Division of Plant Industry, Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, Australia 2601 JOHN D. TJEPKEMA* Harvard Forest, Harvard University,

Petersham, Massachusetts 01366 MICHAEL J. TRINICK

Division of Plant Industry, CSIRO

References and Notes

- C. A. Appleby, in *The Biology of Nitrogen Fixation*, A. Quispel, Ed. (Elsevier, New York, 1974), p. 521; D. R. Coventry, M. J. Trinick, C. A. Appleby, *Biochim. Biophys. Acta* 420, 105 (1976).

- Tippicory, Biotennia Barginet and States (1976).
 J. J. Hyldig-Nielsen et al., Nucleic Acids Res. 10, 689 (1982); A. J. Jeffreys, in Genome Evolution, G. A. Dover and R. B. Flavell, Eds. (Academic Press, London, 1982), p. 157; R. Lewin, Science 217, 42 (1982).
 M. J. Trinick, New Phytol. 85, 37 (1980); and J. Galbraith, *ibid.* 86, 17 (1980).
 Nodulated plants of Parasponia rigida Merr. and Perry were grown as described by J. D. Tjepkema and R. J. Cartica [Plant Physiol. 69, 728 (1982)], and tangential sections (0.6 mm thick) were cut from the zone of rhizobia-conthick) were cut from the zone of rhizobia-containing tissue. A single slice was placed over an aperture 0.8 mm in diameter close to the surface of a photomultiplier tube (Photovolt photometer model 520-M). The nodule slice was enclosed in a gas-tight chamber under an atmosphere of O_2 , N_2 , or CO. Monochromatic light from a Beck-man model DU spectrophotometer was focused on the surface of the slice. Despite an overall absorption rise at lower wavelengths due to light

scatter and the presence of polyphenol oxidation products, the absorption maxima of oxyhemoglobin and ferrous hemoglobin (similar to those of Fig. 3) were recognizable under O_2 and N_2 , respectively. Reversible oxygenation was readily achieved by exchange of these gases, with no appearance of ferric hemoglobin (similar to Fig. 2). In the presence of CO the absorption maxima of carboxyhemoglobin (similar to those of Fig.

- were detected.
 From cowpeas, Vigna unguiculata (L.) Walp, inoculated with the same Rhizobium strain used to infect *Parasponia*, the yield of leghemoglobin was ~ 160 nmole per gram of nodules. H. E. Davenport, *Nature (London)* **186**, 653
- 6. (1960).
 J. D. Tjepkema, Can. J. Bot., in press; C. A. Appleby and A. I. Fleming, unpublished obser-7.
- vations P. J. Ohlsson and K. G. Paul, Acta Chem. Scand. **B30**, 373 (1976).
- A. Appleby, Biochim. Biophys. Acta 189, 267 9. (1969)

- A. Ehrenberg and N. Ellfolk, Acta Chem. Scand. 17, S343 (1963); U. Perttilä, ibid. B35, 435 (1981).
- B. Wittenberg et al., J. Biol. Chem. 242, 626 (1967)
- (1967).
 J. B. Wittenberg, F. J. Bergersen, C. A. Appleby, G. L. Turner, *ibid.* 249, 4057 (1974).
 M. Gö, *Nature (London)* 291, 90 (1981).
 W. H. Fuchsman and C. A. Appleby, *Biochim. Biophys. Acta* 579, 314 (1979).
 Supported in part by grapt 72 59 2352 0 1 055 1
- Biophys. Acta 579, 314 (1979). Supported in part by grant 78-59-2252-0-1-055-1 from the U.S. Department of Agriculture to J.D.T. We thank T.-Y. Leong for his advice and assistance in determining the molecular weight and homogeneity of *Parasponia* hemoglobin monomer by SDS-polyacrylamide gel electro-phoresis and A. J. Jeffreys (University of Leigentry for attrubuting expresendence) 15.
- Leicester) for stimulating correspondence. Present address: Department of Botany and Plant Pathology, University of Maine, Orono

19 November 1982: revised 11 January 1983

Colchicine Alters the Nerve Birefringence Response

Abstract. The internal perfusion of squid axons with colchicine reversibly and selectively reduces the transient sodium current and the birefringence response to a brief depolarizing voltage pulse.

There is a small, brief change in the optical retardation of axons associated with the passage of nerve impulses. Experiments based on the use of the voltage-clamp technique have shown that this birefringence response is correlated with the changes in membrane potential as distinct from the flow of current through the membrane. A disappointing feature of the early optical studies was the absence of any component of the observed structural changes that could easily be linked with the voltage-dependent Na^+ or K^+ conductance of the nerve membrane. The discovery of a physical or pharmacological agent consistently effective in altering both the electrical and the optical signals would have supported the hope that this approach could reveal something useful about the nature of Na^+ channels (1, 2). Llano has recently found that colchicine reduces the Na⁺ currents of squid axons with little effect on the K^+ currents (3). We report here a reversible alteration of the birefringence response associated with a reversible decrease in Na⁺ conductance after the addition of colchicine to the internal perfusion fluid.

Squid (Loligo pealii) giant axons were internally perfused and voltage-clamped by standard techniques (4). The central region of the chamber holding the axon was a cavity (4 by 2 by 3 mm), the walls of which were platinized-silver block electrodes used to measure the voltageclamp current; the top and bottom of the chamber were made of glass to permit the passage of a light beam. Light from a tungsten-halogen bulb passed through a Glans-Thompson prism polarizer at 45° to the axial direction of the axon and was focused on the axon by a cylindrical lens. The light was collected with a $\times 10$ microscope objective and passed through a second prism at 90° to the polarizer onto a ground-glass screen at the image plane. After field stops were positioned next to the axon, the screen was replaced with a YAG-444 (yttriumaluminum-garnet) photodiode used in the photoconductive mode. The photocurrent was measured as the potential developed across a load resistor, and the dc value is thus proportional to the light passing through the system. The light signal was a-c-coupled through a 1-Hz, high-pass resistance-capacitance (RC) filter, amplified, and passed through a 30-kHz, low-pass RC filter. It was then digitized every 40 usec by means of one input of a Nicolet signal averager; the other input was used to record the voltage-clamp current. One digital count corresponded to a change in light intensity of approximately 10^{-7} . Data were averaged (512 to 4096 sweeps) and then stored on magnetic disks under the control of an Apple][computer.

The temperature was kept near 0°C. Streams of dry nitrogen prevented fogging of the glass surfaces. The external solution was an artificial seawater having less than normal Na⁺ to minimize current-dependent artifacts. It contained 100 mM Na⁺, 400 mM tetramethylammonium, 50 mM Ca^{2+} , 600 mM Cl^- , and 2 mM Hepes (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid), pH 7.4. The internal perfusion fluid contained 400 mM K⁺, 320 mM glutamate, 50 mM F^- , and 30 mM phosphate buffer, pH 7.4. Colchicine and β -lumicolchicine were used as obtained from Sigma.