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4 and 5 completes the first cycle, and the 
conversion of 4 and 5 into 16 to 23 
constitutes the entire set of the second 
cycle. A succinct explanation of Fig. 2 
with comments is given below with the 
routes leading to L-allose (16) and I.- 

altrose (17) as examples. 
(Conversion of 1 -z 4) Sulfide 3 is pre- 

pared in the manner described for the 
case of R = benzyl (5). Oxidation of 3 to 
the sulfoxide followed by a Pummerer 
rearrangement under Tsuchihashi condi- 
tions (9, 10) provides the gem-acetoxy- 
sulfide intermediate, which is reduced 
with Dibal at -78°C to give the aldehyde 
4 in overall 84 percent yield. The epimer- 
ic aldehyde 5 is absent. (4 --. 6b) Ho- 
mologation of 4 with formylmethylene- 
triphenylphosphorane followed by re- 
duction with sodium borohydride leads 
to allylic alcohol 6b in 88 percent yield 
and with excellent selectivity. This com- 
pound is ready for application of the 
second AE. (6b -, 8) In earlier experi- 
ments in which the subgtrate 6b' was 
used with Rsbenzyl ,  the AE reaction 
was accompanied by a subsequent titani- 

Total Synthesis of the L-Hexoses um-catalyzed epoxide opening. This 
process involved participation by the ox- 

Abstract. Enantiomerically pure polyhydroxylated natural products are synthe- ygen atom of the C(6) benzyloxy group, 
sized by using a reiterative two-carbon extension cycle consisting offour steps. The which led to formation of the undesired 
generality and eficiency of this methodology are demonstrated in the total synthesis corresponding tetrahydrofuran. Use of 
of all eight L-hexoses. 6b, however, prevents this ethereal oxy- 

gen participation and AE proceeds 
We describe here the systematic, synthesis of these compounds requires a smoothly. The selectivity of this reaction 

stereoselective synthesis of all eight L- double application of the basic cycle. appears perfect, as no trace of the dia- 
hexoses by a synthetic methodology de- The synthesis described here begins stereoisomer 9 is detected by the usual 
veloped in our laboratories for the prepa- with a single fundamental building block, techniques of analysis. (8 -+ 16) Treat- 
ration of polyhydroxylated natural prod- 4-benzhydryloxy-(E)-but-2-en-1-01, 1, a ment of epoxy alcohol 8 with benzene- 
ucts (I). Most monosaccharide synthe- compound which is readily prepared thiolate anion in an alkaline medium re- 
ses have involved modification of sugars from (Z)-2-butene-l,4-diol (8). Step I of sults in the isolation of a diol (77 per- 
that occur naturally ( 2 ) ,  and recorded the extension cycle is therefore eliminat- cent), which is quantitatively trans- 
total syntheses have usually been carried ed in this initial case. The selection of the formed into 12. A sequence of high- 
out in a racemic form and with poor benzhydryl protecting group rather than yielding steps-(i) oxidation and Pum- 
stereoselection (3). The stereochemical a more common group such as benzyl merer rearrangement (90 percent) and (ii) 
challenge involved in a general synthesis has proved to be critical (see below), and Dibal reduction (81 percent), deprotec- 
of monosaccharides, though purely aca- the benzhydryl serves its purpose tion with trifluoroacetic acid, and cata- 
demic, has now been met, and a high through the entire synthesis, which is lytic hydrogenation (90 percent)-af- 
degree of stereocontrol is attainable (4- shown in Fig. 2 with the yield and selec- fords the free sugar L-allose (16). Alter- 
6).  tivity for each step. Conversion of 1 into natively, potassium carbonate in metha- 

Our strategy is based on the reiterative 
two-carbon extension cycle, which con- OR' O R '  
sists of four steps (Fig. 1): I,  conversion I I 

R - C H - C H - C ~ = C H - C H ~ O H  ,_. 
of an aldehyde into its corresponding E- 
allylic alcohol; 11, asymmetric epoxida- 
tion (AE) with titanium tetraisopropox- 
ide, t-butylhydroperoxide, and diethyl 

( ..=. c H 2 0  ‘.;; 
(+)- or (-)-tartrate; 111, treatment of the Fig. Reiterative I 

epoxy alcohol with benzenethiolate an- two-carbon extension 
ion in a basic medium; and IV, oxidation cycle. OR' O R '  R - C H O  0 

3 '  2 '  
and Pummerer reaction of the sulfide R - C H  C H - C H O  IC-I/H\CH-CH,OH 

4 * 
followed by the net hydrolysis of the 
resulting gem-acetoxysulfide with or 
without inversion of the C(2) center (7). 
Because of the presence offour hydroxy- O R '  OR' 

methylene centers in the hexoses, the R - C H - C H - C H 2 S P h  
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Fig. 2. Synthesis of L-hexoses. For a,  c,  e ,  and g, 1 = Pummerer reaction, 2 = Dibal, 3 = deprotection. a:  1 (90 percent), 2 (81 percent), 3 (90 
percent). c: 1 (90 percent), 2 (95 percent), 3 (90 percent). e: 1 (87 percent), 2 (81 percent), 3 (84 percent). g: 1 (71 percent), 2 (77 percent), 3 (61 per- 
cent). For b, d, f, and h: 1 = Purnmerer reaction, 2 = potassium carbonate and methanol, 3 = deprotection, b: 1 (90 percent), 2 (48 percent), 3 
[see (11)). d: 1 (90 percent), 2 (60 percent), 3 (20 percent). f :  1 (87 percent), 2 (66 percent), 3 (85 percent). h: 1 (71 percent), 2 (41 percent), 3 (27 per- 
cent). 
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no1 is substituted for Dibal in step (ii), 
followed by deprotection. This results in 
the complete epimerization of the C(2) 
center (7), and provides L-altrose (17) 
(11). 

The sequences leading to the other 
hexoses have also been carried out satis- 
factorily in the manner described above 
for L-allose and L-altrose (12). All steps 
in Fig. 2 except for the step 9 -+ 13 
proceed with remarkable regio- and ster- 
eoselection. Since the mirror image of 
every compound in Fig. 2 can be pre- 
pared by simple exchange of the chiral 
ligand (tartrate ester) in the AE reaction, 
the formal synthesis of the D-hexoses 
has also been achieved. Thus, our two- 
carbon extension methodology has 
proved to be generally applicable and 
efficient in controlling stereochemistry in 
the construction of acyclic, polyhydrox- 
ylated carbon frameworks. 

Soo Y. KO 
ALBERT W. M. LEE 

Department of Chemistry, 
Massachusetts Institute of Technology, 
Cambridge 02139 

References and Notes 

1. This report is part 5 in a series on the synthesis 
of saccharides and polyhydroxylated natural 
products. For part 4, see L. A. Reed, 111, Y. Ito, 
S. Masamune, K. B. Sharpless, J .  Am. Chem. 
Soc., in press. 

2. R. L. Whistler and M. L. Wolfram, Eds., Meth- 
ods in Carbohydrate Chemistry (Academic 
Press, New York, 1962), vol. 1. 

3. J. K. N.  Jones and W. A. Szarek, in The Total 
Synthesis of Natural Products, J .  ApSimon, Ed. 
(Wiley, New York, 1973); S. Coffey, Ed.,Rodds 
Chemistry of Carbon Compounds (Elsevier, 
New York, 1976). 

4. T. Katsuki and K. B. Shamless. J. Am. Chem. . . 
Soc. 102, 5974 (1980). 

5. T. Katsuki, A. W. M. Lee, P. Ma, V. S. Martin, 
S. Masamune. K. B. Shamless. D. Tuddenham. 
F. J. ~ a l k e r , ' ~ .  Org. ~ h d m .  47, 1373 (1982). 

6. A. W. M. Lee, V. S. Martin, S. Masamune, K. 
B. Sharpless, F. J. Walker, J. Am. Chem. Soc. 
104,3515 (1982); N. Minami, S. S. KO, Y. Kishi, 
ibid., p. 1109. 

7. See Lee et al. (6). Although the hydrolysis with 
epimerization of the 4-carbon Pummerer prod- 
uct proceeds rapidly, completely, and in excel- 
lent y~eld, some complications are observed in 
the 6-carbon case. In general, this hydrolysis 
with epimerization proceeds in somewhat lower 
yield, primarily due to instability and difficulties 
with isolating the partially hydrated aldehyde 
product. The epimerization, however, proceeds 
to give an isomer ratio of > 95:5 in all these 6- 
carbon cases. 

8. Available from Aldrich Chemical Co. 
9. See Lee et a / .  (6) and references cited therein. 

Treatment of epoxy alcohol 2 with O.5N NaOH 
(2.5 equivalents) in t-butyl alcohol followed by 
slow addition of thiophenol (1.2 equivalents) in 
moist t-butyl alcohol and subsequent trap ing of 
the primary epoxide by thiolate anion 1ea8to the 
2,3-diol. 
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OH iSPh 
OH - RO-o 

OH SPh - RO+ 

OH 

2 .  R = CH(Ph)2 
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Hemoglobin in a Nonleguminous Plant, Parasponia: 
Possible Genetic Origin and Function in Nitrogen Fixation 

Abstract. A dimeric hemoglobin was purified from nitrogen-firing root nodules 
formed by association of Rhizobium with a nonleguminous plant, Parasponia. The 
oxygen dissociation rate constant is probably suficiently high to allow Parasponia 
hemoglobin to function in a fashion similar to that of leghemoglobin, by oxygen 
buffering and transport during symbiotic nitrogen jixation. The identification of 
hemoglobin in a nonlegume raises important questions about the evolution of plant 
hemoglobin genes. 

In higher plants, hemoglobin is gener- 
ally thought to occur only in the nitro- 
gen-fixing root nodules of legumes (1). 
Because the structure of legume hemo- 
globin (leghemoglobin) genes is very 
similar to that of animal globin genes, it 
has been suggested that the gene for 
leghemoglobin was transferred to le- 
gumes from another eukaryote outside 
the plant kingdom, relatively recently in 
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Fig. 1. Preparative-scale isoelectric focusing 
of oxyhemoglobin (Oxy Hb) from P .  ander- 
sonii nodules and leghemoglobin (Lb) from 
cowpea [Vigna unguiculara (L.) Walp.] nod- 
ules, both inoculated with Rhizobium strain 
CP283 and grown as previously described (3). 
Focusing was performed at 4'C in a 100-ml gel 
slurry bed of Ultrodex (LKB) containing 0.5 
percent Ampholine (LKB) (pH 4.0 to 6.0) and 
1.5 percent Ampholine (pH 5.0 to 7.0) (14). 
The gel plate was loaded with approximately 
equal amounts of the total hemoglobin puri- 
fied by Sephacryl S200 chromatography from 
Parasponia and cowpea nodule extracts. Iso- 
electric points, measured at 4'C, are marked 

evolutionary history (2). We report that 
hemoglobin also occurs in the nitrogen- 
fixing root nodules of Parasponia, a 
member of the Ulmaceae. This plant is 
nodulated by strains of Rhizobium that 
also nodulate certain members of the 
Leguminosae (3). 

The absorption spectra of Parasponia 
nodule segments are consistent with the 
presence of hemoglobin (4) ,  and this 
Parasponia hemoglobin may be purified 
from nodules extracted under strict an- 
aerobic conditions that prevent tannin 
formation and hemoglobin degradation. 
Fresh nodules from Parasponia ander- 
sonii Planch, infected with Rhizobium 
strain CP283 (3), or nodules frozen in 
liquid N2 were dropped into the steel 
chamber of an Omnimixer (Sorvall) con- 
taining four volumes of extraction buffer 
[SO mM potassium phosphate (pH 7.2), 
1mM EDTA, 4 percent soluble polyvi- 
nylpyrrolidone (Kollidon 25, BASF), 
and 0.1 percent sodium dithionite 
(Fluka)] equilibrated with pure CO. The 
mixture was ground at full speed under 
CO for 2 minutes at O°C, then centrifuged 
under CO at 100,000g for 60 minutes at 
0°C. The yield of crude carboxyhemoglo- 
bin was 45 to 70 nanomoles per gram of 
Parasponia nodule tissue (5) .  Anaerobic 
chromatography on a column of Sepha- 
cry1 S200 (Pharmacia) equilibrated with 
CO-saturated 50 mM potassium phos- 
phate and 0.1 mM EDTA (pH 7.2) at 0°C 
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