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Proto-oncogenes, or c-oncogenes, are understand the molecular mechanisms of 
cellular DNA sequences homologous to the oncogenesis of these tumors, we 
the transforming genes (v-oncogenes) of undertook a study of the expression of 
acute transforming viruses (I). These abl, myb, and rnyc oncogenes (9) which 
genes are highly conserved through ver- have been associated with neoplasms of 
tebrate evolution (2) and are thought to hematopoietic cells (3). In view of the 
code for proteins that are associated with finding that several murine plasmacyto- 

Abstract. Three types of tumors termed plasmacytomas (ABPC's), lymphosarco- 
mas (ABLS's), and plasmacytoid lymphosarcomas (ABPL's) arise in BALBlc mice 
treated with pristane and Abelson murine leukemia virus (A-MuLV). While most 
ABPC's and ABLS's contain integrated A-MuLVproviral genome and synthesize the 
v-abl RNA,  most ABPL's do not. The ABPL tumors were examined for the 
expression of other oncogenes that may be associated with their transformed state, 
in the absence of transforming virus. These tumors expressed abundant c-myb RNA 
of unusually large size and showed DNA rearrangements of the c-myb locus. 

the control of cell growth, differentia- 
tion, and development (3). Mutations, 
deletions, or altered rates of expression 
of these genes are frequently associated 
with the development of neoplasia. 

During studies with Abelson murine 
leukemia virus (A-MuLV), we and oth- 
ers observed that this virus induces in 
adult BALBIc mice a variety of lym- 
phoid neoplasms predominantly of the 
pre-B cell series (ABLS tumors) (4, 5). 
However, when the mice are previously 
injected with pristane, which induces 
intraperitoneal granulomatous tissue (6), 
this virus also rapidly induces plasma- 
cytomas (ABPC tumors) (7) and, occa- 
sionally, a morphological subset of lym- 
phosarcomas characterized by plasma- 
cytoid cytoplasm but with very little 
immunoglobulin production (ABPL tu- 
mors) (8). 

A preliminary experiment indicated 
that ABLS's and ABPC's synthesized 
abundant A-MuLV RNA while most 

mas and Burkitt's lymphomas exhibit 
translocations involving the rnyc gene 
locus (10-13), we also looked for evi- 
dence of rearrangement of these three 
oncogenes in the genomes of these tu- 
mors. Five ABLS tumors, six ABPL 
tumors, and three ABPC tumors were 
used in the present study. 

Integration and Expression of A-MuLV 

First, the three classes of neoplasms 
were studied for the integration and 
expression of the A-MuLV genome. As 
shown in Fig, l a  and Table 1, abl RNA is 
abundant in all ABLS and ABPC tu- 
mors. The bulk of the abl RNA in these 
tumors was a 6.7-kilobase (kb) polyaden- 
ylated [poly(A)] RNA, a size expected 
for the A-MuLV genomic RNA (14). In 
contrast, five of the six ABPL tumors 
(ABPLI, ABPL2, ABPL4, ABPL109, 
and ABPL133) did not show A-MuLV 

ABPL's, in striking contrast, did not. To RNA in their cytoplasm. An exception 
was ABPL3, which contained large 
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known to express c-abl encoded protein 
NCPlSO (15). Figure lb  shows Southern 
blot analysis (16) of the DNA's derived 
from the three classes of neoplasms after 
hybridization with v-abl probe. The 
DNA's from these tumors were digested 
with Kpn I, which cuts the proviral 
genome in the two flanking long terminal 
repeats (14), thereby releasing a 6.7- 
kilobase pair (kbp) fragment from the 
integrated proviral DNA. The c-abl 
gene, however, yielded two Kpn I frag- 
ments of 8.3 and 24.0 kbp. This distinc- 
tion in fragment size between c-abl and 
v-abl allowed us to ascertain the pres- 
ence or absence of an integrated proviral 
genome. As expected, the results show 
that all ABPC's, ABLS's, and ABPL3 
contained at least one integrated provi- 
ral genome, while ABPLI, ABPL2, 
ABPL4, ABPL109, and ABPL133 did 
not show a 6.7-kbp proviral DNA frag- 
ment in their genomes. 

Expression of myc 

We then examined all these tumors for 
the expression of myc RNA, which had 
earlier been shown to be present in high 
levels in mouse plasmacytomas (17-19), 
human Burkitt lymphomas (19, 20), and 
avian bursa1 lymphomas (21) (Fig. 2a and 
Table 1). All these tumors expressed a 
2.4-kb rnyc RNA which is also a constit- 
uent of normal thymus and spleen RNA. 
The band intensities of rnyc RNA in the 
three classes of tumors varied considera- 
bly with the ABLS's generally contain- 
ing the lowest amount of rnyc RNA (Fig. 
2a and Table 1). Earlier studies demon- 
strated that most, but not all, BALBlc 
plasmacytomas expressed abundant 2.4- 
kb rnyc RNA. Some others express an 
abnormal 1.8-kb myc RNA (12, 17-19), 
which appears to result from DNA rear- 
rangements (12, 13, 17-19) in the c-myc 
locus of these tumors. Some, but not all, 
ABPC's examined in the earlier studies, 
plus those shown in Fig. 2a, contained 
1.8-kb rnyc RNA. Our studies show that 
none of the ABLS's or ABPL's contain 
such a small rnyc RNA. When the genom- 
ic DNA's of these tumors were exam- 
ined for rearrangements in myc locus, 
none were found in these two classes of 
tumors with the exception of an addition- 
al Eco RI band very close to the germ 
line 21-kbp myc band in ABPL4 (Fig. 
2b). Two of the ABPC's, ABPC24 and 
ABPC45, have rnyc rearrangements, but 
only ABPC24 produces an altered myc 
RNA (Fig. 2a and Table 1). 
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Rearrangement in rnyb Locus 

As can be seen in Fig. 3a, both 
ABLS's and ABPL's contain a large 
quantity of 3.8-kb RNA and a trace 
amount of 4.2-kb RNA that hybridizes 
with a cloned probe from avian v-myb 
(22). Particularly dramatic elevations in 
the amount of rnyb RNA occur in ABPL- 
1 and ABPL2. In addition five of the six 
ABPL tumors contain a still larger form 
of rnyb RNA. The size of this ABPL- 

specific rnyb RNA varies among the tu- 
mors but is usually around 5.0 kb. The 
3.8- and 4.2-kb rnyb RNA's can be seen 
in small amounts in ABPC's and in most 
normal cells, particularly thymus, but 
the 5.0-kb and larger rnyb RNA has no 
counterpart in any normal cell RNA that 
we have examined. The autoradiograph- 
ic patterns of Southern blots of tumor 
DNA's probed with v-myb are shown in 
Fig. 3b. The Hind I11 digests of normal 
cells, as well as those of ABLS and 

Fig. 1. Hybridization with abl probe. Solid tumors were excised from subcutaneous or 
mesenteric sites after transplantation of ascites tumor cells into syngeneic mice. Spleens and 
tumors were frozen in liquid nitrogen and pulverized with mortar and pestle. (a) Total RNA was 
prepared as described (17, 32) and twice enriched for poly(A) containing molecules on 
oligodeoxythymidylate (dT) cellulose. This RNA (5 pg) was subjected to electrophoretic 
separation on 1 percent agarose containing 5 mM methylmercury hydroxide, blotted onto 
diazotized phenylthioether paper (Schleicher and Schuell), and hybridized under stringent 
conditions (17) with a 1.2-kbp Bgl I1 fragment that had been isolated from cloned A-MuLV (14). 
subcloned into pBR322 with the use of Eco RI linkers, and labeled with "P by nick translation 
(33). Tissue and tumor sources of RNA's are indicated at the top, and sizes (in kilobases) of 
hybridizing bands are indicated in the margins. These sizes were determined from ethidium 
bromide-stained plant virus standards [tobacco mosaic virus, 6.34 kb (34). brome mosaic virus, 
3.4, 3.1,2.3, and 0.87 kb (331. (b) abl Hybridization of blots of Kpn I digests of genomic DNA 
(25 pg) from the tumors and liver as indicated. High molecular weight DNA was prepared (17, 
36) and digested with Kpn I. The digested genomic DNA (25 pg) was subjected to electrophore- 
sis in 0.7 percent agarose gels, blotted onto nitrocellulose (16), and hybridized with the same 
mouse abl probe used in (a). Sizes of hybridizing fragments are indicated in the margins. These 
sizes were determined from ethidium bromide-stained Hind I11 fragments of phage A DNA. 
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ABPC tumors, showed the presence of 
three myb-hybridizing bands of 2.2, 2.8, 
and 3.7 kbp. In contrast, all six ABPL 
tumors examined (Table 1) contained an 
additional band of varying size, but usu- 
ally larger than 3.7 kbp. The additional 
Hind I11 rnyb band in ABPL4 is very 
close to 3.7 kbp, but it is clearly visual- 
ized in Eco RI digests (data not shown). 
The larger band appeared to be a rear- 
ranged version of the 3.7-kbp germ line 
fragment, since this fragment generally 
hybridized with a distinctly diminished 
intensity in the tumors where a fourth 
fragment appeared. The appearance of a 
larger DNA fragment could be correlated 
with the appearance of a larger rnyb 
RNA in these tumors (except ABPL109), 
leading us to conclude that in these tu- 
mor cells the DNA rearrangement in the 
rnyb locus of one chromosome results in 
the synthesis of abnormal messenger 
RNA (mRNA) transcripts. 

Cytoplasmic pChain RNA 

We have made some studies of the 
surface antigens on the lymphosarcomas 
in order to determine how best to classi- 
fy them in terms of lymphocyte differen- 
tiation pathways (23); we have also char- 
acterized four of the ABLS's and five of 
the ABPL's for immunoglobulin M (IgM) 
p-chain expression. In comparison to 
splenocytes, which make large amounts 
of p-chain mRNA, both types of tumors 
express small amounts of cytoplasmic p- 
chain RNA (Fig. 4). The tumors contain 
varying amounts of several forms of p- 
chain mRNA. The 2.4-kb form presum- 
ably encodes p chains of secreted IgM 
(ps), and the 2.7-kb form probably en- 
codes p chains of IgM that remain mem- 
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brane bound (p,,,,) (24). Many of the 
tumors also contain smaller forms 
of p-chain RNA, probably analogous 
to those reported in other transformed B 
lymphocytes (25). We conclude the 
ABLS and ABPL tumors are committed 
to the B lymphocyte differentiation path- 
way. 

Protosncogenes and Hit-and-Run 

Mechanisms 

The mechanism of A-MuLV induced 
transformation is not known; this pro- 
cess may involve more than one step. 
Most studies indicate that A-MuLV inte- 
grates in the form of a provirus which is 
then actively transcribed into v-abl RNA 
which encodes a gag-abl fusion protein 
(gag, gene for a structural protein in 
retroviruses), thought to be responsible 
for cell transformation (26). A second 
possible mechanism of A-MuLV induced 

transformation involves secondary ge- 
netic changes incurred during a transient 
virus infection. This mechanism can be 
inferred from the demonstration that in- 
serted A-MuLV genomes can be elimi- 
nated from cloned, transformed lym- 
phoid lines without the loss of the trans- 
formed phenotype (27). Elimination of 
A-MuLV appears to be a relatively com- 
mon occurrence in some lymphoid cells 
(28). The ABPL cells, which lack A- 
MuLV proviral genome, provide a model 
system to study secondary changes that 
lead to maintenance of the malignant 
state in the absence of transforming vi- 
rus. "Hit-and-run" phenomena have 
been demonstrated for various virus sys- 
tems, such as herpes simplex virus (29). 
Our data suggest that hit-and-run mecha- 
nisms might involve rearrangements of 
cellular proto-oncogenes leading to their 
activation. We have shown that the 
ABPL tumors, although lacking A- 
MuLV proviral genome, have undergone 

rearrangements in the c-myb locus, 
which nonetheless usually remains tran- 
scriptionally active. The ABPL109 tu- 
mor appears to be an exception in that it 
has a myb rearrangement but no evi- 
dence of an altered RNA transcript. 

Another interesting exception to this 
general picture is ABPL3, which con- 
tains transcriptionally active A-MuLV 
proviral genomes and has a rearranged c- 
myb. Although we have no direct evi- 
dence that A-MuLV integrated initially 
and then was lost from cells of the ABPL 
type, we have adopted this as our work- 
ing hypothesis. In fact, ABPL3 may be a 
clue that this was the actual operative 
mechanism since it has elements of 
ABPL's, namely, rearranged myb DNA 
and a 5.0-kb myb RNA, and it also has v- 
abl RNA and at least one copy of A- 
MuLV proviral genome integrated in its 
DNA. The excision process may have 
occurred at another, particularly unsta- 
ble site of A-MuLV integration, for ex- 
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kbp fragment isolated from 
cloned avian myeloblastosis 
virus (22), subcloned in 
pBR322. Conditions for RNA 3.7 - 
electrophoresis are given in 
the legend for Fig. la. Condi- 5 0 2.8 ' 

tions for hybridization are the i:: 2.2 
relaxed conditions described 
(1 7). Intensity of hybridization 
and background levels varied 
considerably in the different 
blots assembled. (b) rnyb Hy- 
bridization of blots of Hind 111 
digests of 25 kg of genomic 
DNA from the tumors and tissues indicated. The conditions for DNA electrophoresis are as in Fig. Ib. The probe and hybridization conditions 
are as in (a). 

Table 1 .  Summary of onc gene hybridizations. 

abl ~ Y C  myb 
Tumor Transplant 

generation Viral Proviral 2.4-kb 1.8-kb Rearranged 3.8-kb > 4.5-kb Rearranged 
RNA* DNAt RNAS RNAB DNA11 RNAT RNA# DNA** 

ABLSl 13 ++++ ++ + - - + + - - 
5 12 ++++ + ++ - - + + - - 
8 13 ++++ + + + - - ++ - - 

19 1 1  ++++ + + + - - ++ - - 
140 6 ++++ ++ +++ - - ++ - - 

ABPLI 9 - - +++ - - + + ++ + 
2 7 - +++ - - + + ++ + - 
3 I I ++++ + + +++ - - ++ + + 
4 16 - - +++ - + ++ + + 

109 2 - - +++ - - ++ - + 
133 8 - - +++ - - ++ ++ + 

ABPC4 14 ++++ + +++ - - - - - 
24 9 ++++ + + +++ + - - - 
45 23 ++++ ++ +++ - + - - - 

Spleen - - + - - + - - 
Thymus - - + + - - ++ - - 

*6.7-kb abl RNA. t6.7-kbp Kpn I band of abl DNA. Smyc RNA transcript from c-myc unrearranged roto-oncogene. Pmyc RNA transcri t from rc-myc 
rearraked proto-oncogene. IlEco RI restriction fragment different from germ line c-myc fragment of 21 kgp. llmyb RNA transcript from c-myg unrearranged 
proto-oncogene. Xmyb RNA transcript from rc-myb rearranged proto-oncogene. usually > 4.5 kb in size. **Hind I11 restriction fragment different from those 
of germ line c-myb fragments of 2.2, 2.8. and 3.7 kbp. 
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Fig. 4. Cp (constant 
portion of p chain) 
hybridization of blots 
of 5 kg of poly(A)+ 
RNA's from spleen 
and the tumors indi- 
cated. The conditions 
for RNA electropho- 
resis and blotting are 
given in the legend to 
Fig. la. The probe 
was the Pst 1 insert 
containing mouse 
IgM Cp sequences 
isolated from a com- 
plementary DNA 
clone pMKl (38). The 
bands of hybridiza- 
tion of RNA from the 
ABLS tumors and 
spleen were so in- 
tense that a shorter 
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