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spatially uniform background potential- 
which exerts no intermolecular force and 
hence has no effect on the structure or 

Van der Waals Picture of Liquids, 
Solids, and Phase Transformations 

David Chandler, John D. Weeks, Hans C. Andersen 

A remarkable revival of the van der liquids. But the range of utility of the van 
Waals picture of liquids occurred during der Waals picture is far broader than this 
the past two decades. This renaissance limited application might suggest. Its va- 
was spurred by the discovery (1) from lidity and usefulness have been docu- 
computer simulations that a system of mented in numerous studies extending 
hard spheres (impenetrable "billiard from computer simulations of condensed 

Summary. The van der Waals picture focuses on the differing roles of the strong 
short-ranged repulsive intermolecular forces and the longer ranged attractions in 
determining the structure and dynamics of dense fluids and solids. According to this 
physical picture, the attractive interactions help fix the volume of the system, but the 
arrangements and motions of molecules within that volume are determined primarily 
by the local packing and steric effects produced by the repulsive forces. This very 
useful approach, its limitations, and its successful application to a wide variety of 
static and dynamic phenomena in condensed matter systems are reviewed. 

balls") has a first-order fluid-solid transi- 
tion that is intimately related to the 
freezing and melting transitions of real 
materials (2). The van der Waals picture 
stresses the dominant role of the short- 
ranged harshly repulsive intermolecular 
forces (which are nearly hard core inter- 
actions) in determining the structural ar- 
rangements of molecules in a liquid, 
while neglecting the influence of the 
longer ranged attractive interactions on 
the structure. Though originally devel- 
oped to describe the liquid-gas critical 
point (3), this approach is now known to 
be most useful and accurate at the high 
densities that characterize a liquid away 
from the critical point, since at those 
densities the nearly incompressible na- 
ture of the fluid tends to inhibit the 
fluctuations that would invalidate a van 
der Waals theory. 

The successful exploitation of this pic- 
ture is found in textbook (4) descriptions 
of peirturbation theories of simple atomic 

materials, to analytical equilibrium theo- 
ries of polyatomic organic liquids and 
mixtures, to models of transport, and 
even to vibrational relaxation in liquids. 
In this article we review this powerful 
perspective and some recent develop- 
ments. 

The Basic Idea 

According to the van der Waals pic- 
ture, the average relative arrangements 
and motions of molecules in a liquid (that 
is, the intermolecular structure and cor- 
relations) are determined primarily by 
the local packing and steric effects pro- 
duced by the short-ranged repulsive in- 
termolecular forces. Attractive forces, 
dipole-dipole interactions, and other 
slowly varying interactions all play a 
minor role in the structure, and in the 
simplest approximation their effect can 
be treated in terms of a mean field-a 

dynamics but merely provides the cohe- 
sive energy that makes the system stable 
at a particular density and pressure. 

Thus an atom in a monatomic fluid is 
like a billiard ball and molecules are 
much like the familiar space-filling mod- 
els. If one imagines a collection of such 
objects moving about within a certain 
volume, colliding elastically with each 
other and oblivious to anv attractive or 
long-ranged forces between them, then 
one has a physical picture that captures 
many essential features of liquid struc- 
ture and dynamics on a molecular level. 

In the modern literature, perhaps the 
first explicit statements of this picture 
for monatomic liquids were given by 
Reiss (5)  and by Longuet-Higgins and 
Widom (2). The idea is much older, 
however, since it is the primary (though 
not sole) physical content of the van der 
Waals equation of state (3). For that 
reason we attribute the concept to van 
der Waals, but this historical expedient 
is not meant to detract from the signifi- 
cance of contributions made by many 
recent workers to our current under- 
standing of the idea. 

The attractive intermolecular interac- 
tions rigorously have no effect on the 
structure only in the hypothetical and 
unrealistic limit in which the attractive 
interactions are both infinitely weak and 
infinitely long-ranged (3, 6, 7). In that 
case, each particle in the system feels 
attractive interactions from all the other 
particles. These interactions exert no net 
vector force, while the resulting poten- 
tial energy is accurately described in 
terms of a spatially uniform mean field. 
What is significant, however, is that the 
attractions often continue to have little 
influence on the structure of real con- 
densed materials, where every atom has 
several nearest neighbors and packing 
suppresses large density fluctuations. 
The spatial variation of real attractions in 
the intermolecular structures allowed by 
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Fig. 1. Structure and pair interactions of a 
simple liquid. A schematic view of a region of 
a liquid composed of spherical particles inter- 
acting via a pair potential w(r) is shown in (b). 
The repulsive branch of the potential at r < ro 
is indicated by a solid curve. For the Lennard- 
Jones system, the repulsive force reference 
system potential, uo(r), is w(r) + for r < r0 
and zero otherwise, as given in Eq. 3.  A hard 
sphere potential, ud(r), which is infinite for 
r < d and zero otherwise, is associated by 
Eq. 10 with uo(r) as shown schematically in 
(a). The radial distribution function, g(r), for 
the Lennard-Jones liquid at a state near the 
triple point with pu3 = 0.85 and k B T k  = 0.88 
is plotted in (c). It is compared with go(r) and 
g,(r), the radial distribution functions of the 
repulsive force systems with pair potentials 
uo(r) and ud(r), at the same temperature and 

2d r density. [After Chandler (741 

Fig. 2. The unique separation 
of the Lennard-Jones potential Energy 
w(r) into a part uO(r) which 
gives repulsive forces identical 
to those found in w(r) (and no 
attractive forces) and a part 
~ ( r )  which contains all the at- 
tractive sive forces). forces Since (and the no repul- repul- O bdE[ Cdr 
sive forces are equal, the po- u(r) 
tentials w(r) and uO(r) can dif- -, ------ - c 
fer by only a constant for 
r < rO. The value E (see Eq. 3) of that constant is determined by requiring that uo(r) vanish at ro 
where the repulsive force vanishes. Note that the remainder, u(r), is smooth and relatively 
slowly varying with this separation. 

the repulsive forces is weak enough that 
the van der Waals uniform mean field 
treatment remains accurate and provides 
useful predictive power. 

Part of the explanation for this fact 
rests on the differing physical bases for 
repulsive and attractive intermolecular 
forces. In cases where the van der Waals 
picture is useful, the attractions usually 
arise from electrostatic effects such as 
fluctuating dipole-induced dipole inter- 
actions (the so-called dispersion interac- 
tions). These forces are not associated 
with significant distortions of intramo- 
lecular charge distributions, and hence 
their magnitudes usually are not large. 
Typically, the spatial variations of at- 
tractive interactions are - kBTt per one 
molecular diameter, where kg is Boltz- 
mann's constant and T,  is the triple point 
temperature of the material. 

In contrast, the short-ranged repul- 
sions arise from the Pauli exclusion prin- 
ciple, which does not allow electrons on 
different molecules to be in the same part 
of space at the same time. Any attempt 
to push two molecules together too 
closely will cause the electron clouds on 
each molecule to distort in such a way as 
to resist such overlap. The forces gener- 
ated in this way are very strong and 
rapidly varying functions of the molecu- 
lar positions and orientations. Indeed, 

the typical spatial variation for these 
short-range repulsions is - kbTt per one- 
tenth of an atomic or molecular diame- 
ter. These forces are responsible for the 
nearly incompressible nature of many 
dense fluids, since neighboring particles 
are close enough together that an at- 
tempt to decrease the volume will be 
strongly resisted by the repulsive forces. 

In many cases the repulsive forces are 
sufficiently harsh that one can approxi- 
mate their effect by hard core interac- 
tions, though notable exceptions exist, 
as discussed below. We define a van der 
Waals material as a system composed of 
hard core molecules, the sizes and 
shapes of which are chosen to mimic the 
repulsive branches of the intermolecular 
potentials, and held at a particular densi- 
ty by a uniform mean field potential. The 
thesis of this article is that the properties 
of many real condensed matter systems 
can be accurately described by using the 
appropriately chosen van der Waals ma- 
terial. 

Simple Atomic Liquids 

To establish the quantitative validity 
of these statements, it is useful to consid- 
er, as an example, the interparticle cor- 
relations in a monatomic fluid such as 

liquid argon. The radial distribution 
function, g(r), provides a simple mathe- 
matical description of the structure of an 
atomic liquid (4). It is defined by 

pg(r) = average density of atoms at 
r given that another atom 
is located at the origin (1)  

where p is the average number of atoms 
per unit volume, NIV. The radial distri- 
bution function gives information about 
the average relative arrangements of 
pairs of atoms. More complex descrip- 
tions of the structure will involve triples, 
quadruples, and so on, but g(r) suffices 
for many purposes. It is the pair func- 
tion, g(r), that is measured by diffraction 
experiments, since the scattering of neu- 
trons or x-ray radiation from a liquid is 
dominated by the interference from the 
distributed pairs of scattering centers (4). 

The total potential energy of an atomic 
fluid is often represented by a sum of 
radially symmetric pair potentials (8) ,  
w(r), like that pictured in Fig. 1. The 
extensively studied Lennard-Jones fluid 
has the potential 

The properties of this fluid are known 
from the results of computer simulations 
(9-ll), and, with appropriately chosen 
values of the energy and length scale 
parameters E and a, it serves as an 
accurate model for real atomic liquids 
such as argon (12). 

The intermolecular force is given by 
the gradient of the potential -dw(r)/dr; 
hence particles repel each other at sepa- 
rations less than the potential minimum 
at ro = 2%. The repulsive branch at 
r < ro should be carefully distinguished 
from the merely positive portion of the 
potential at r < a, or from the first term 
in the arbitrary algebraic combination in 
Eq. 2, since only the sum has physical 
significance. 

As first pointed out by the authors (13, 
14), one can directly test the differing 
roles of attractions and repulsions as 
assumed in the van der Waals picture for 
such a model of an atomic liquid by 
comparing its g(r) to go(r), the radial 
distribution function at the same tem- 
perature and density produced solely by 
the repulsive forces. (Throughout this 
article, the subscript zero refers to the 
repulsive forces.) The latter is deter- 
mined by studying the properties of a 
system with the repulsive pair potential 

The properties of the hypothetical fluid 
for which the total potential energy is the 
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surn of repulsive pair potentials, uO(r), 
have been studied by computer simula- 
tion and by analytical theory (see be- 
low). 

In Fig. 1, we compare the repulsive 
force fluid go(r) with that for the full 
Lennard-Jones liquid at a typical high- 
density and low-temperature thermody- 
namic state near the triple point. We see 
from Fig. 1 that 

is an excellent approximation. This strik- 
ing correspondence (13, 14) provides di- 
rect verification of the van der Waals 
picture, and occurs because the density 
is sufficiently high that neighboring parti- 
cles are extremely close to one another, 
as is evident from the position of the first 
peak in g(r). The change in energy asso- 
ciated with any local (that is, short wave- 
length) displacement, such as the one 
depicted in Fig. 1 with the dashed circle, 
will clearly be dominated by the interpar- 
ticle repulsive forces. The attractive 
forces, on the other hand, are much 
weaker and tend to cancel one another, 
leaving only an averaged uniform back- 
ground energy. 

Hard Sphere Model 

Perhaps more remarkable is the fact, 
also illustrated in Fig. 1, that there exists 
a hard sphere system for which the radial 
distribution function gd(r) is closely re- 
lated, indeed (except for r less than ro) 
nearly identical to go(r). The hard sphere 
fluid is characterized by the magnitude 
of the sphere diameter, d,  appearing in 
the hard sphere potential 

(Throughout, we use the subscript d to 
refer to hard spheres of diameter d.) The 
similarity between the structure of the 
continuous repulsive force system and 
the appropriately chosen hard sphere 
fluid is apparent despite obvious differ- 
ences at short times (more precisely, at 
high frequencies) in the impulsive hard 
sphere dynamics and the dynamics aris- 
ing from a continuous interaction. The 
agreement is evidently a consequence of 
the fact that the length scale over which 
the pair potentials for the two differ 
significantly, roughly ro - d, is relative- 
ly small compared to d, the single length 
scale of the hard sphere fluid. The soft- 
ness (non-hard core nature) of a realistic 
repulsive potential should therefore play 
a minor role in the structure except at 
short wavelengths. 

It is for this reason that the similarity 
between a monatomic liquid and the hard 
sphere fluid appears especially striking 
when pair correlations are described 
with the structure factor 

While short wavelength differences are 
noticeable in the main peaks of go(r) and 
gd(r), the differences between So(k) and 
Sd(k) are not substantial until one consid- 
ers relatively large values of the wave 
vector k, where S(k) is already close to 
its asymptotic value of unity. 

The Fourier-transformed representa- 
tion of the radial distribution function is 
directly determined by scattering experi- 
ments. The close correspondence be- 
tween the structure factors of real liauids 
and that of the hard sphere fluid-was 
established empirically in the 1960's by 
Ashcroft and Lekner (15) with their hard 
sphere model of liquid metals and by 
Verlet (10) in his computer simulation 
study of the Lennard-Jones fluid. Verlet 
showed that at a given density p and 
temperature T, a hard sphere diameter 
d(T,p) could be chosen such that the 
liquid structure factor S(k) was accurate- 
ly fit by the hard sphere fluid structure 
factor, SAk). In effect, this procedure 
determined the "size" of the particles, 
and its success clearly pointed toward 
the qualitative validity of the van der 
Waals picture of liquids. 

WCA Theory 

Motivated by this discovery and by 
Longuet-Higgins and Widom's compel- 
ling physical arguments (2) in favor of 
the van der Waals concept, we devel- 
oped a quantitative theoretical explana- 
tion of these observations in what has 
become known as the WCA theory of 
liquids (13, 14, 16), the principal results 
of which we have already discussed in 
connection with Fig. 1. The WCA theory 
exploits the van der Waals picture. As a 
result, the first and crucial step in the 
development is the division of the inter- 
molecular potential into the short-ranged 
repulsive portion and the longer ranged 
more slowly varying part. For monatom- 
ic liquids, the division we introduced is 
unambiguous as described above. The 
repulsive branch is given uniquely by 
uo(r) in Eq. 3, and the remainder 

contains all the attractions and no other 
forces (see Fig. 2). According to the van 
der Waals picture, we may neglect the 
role of u(r) in determining g(r), and the 
problem of explaining the validity of the 

hard sphere model reduces to the calcu- 
lation of go(r) and showing how this 
function is related to the properties of 
the hard sphere fluid. 

The radial distribution function due to 
the repulsive forces depends upon the 
potential uo(r) through the Boltzmann 
factor, exp[-uo(r)/ksrl, and complicated 
integrals involving this factor. This func- 
tion rises from zero to one over a small 
range of r values, while the Boltzmann 
factor for the hard sphere potential, exp- 
[-ud(r)/kBa, is a step function that 
changes from zero to one at precisely 
r = d. This difference, illustrated in Fig. 
3, gives rise to the differences between 
go(r) and gd(r) shown in Fig. 1. These can 
be understood by introducing the indi- 
rect (or cavity) distribution function, 
yo(r), defined by 

The Boltzmann factor describes the ef- 
fect of the direct interaction between a 
pair of particles separated by a distance r 
(such as particles 1 and 2 in Fig. 3). That 
factor would be the full go(r) in the dilute 
gas phase. In a liquid, however, the 
correlations between that pair of parti- 
cles are affected by all the surrounding 
particles, and this effect is described by 
yo(r). [In the limit p -+ 0, there is no 
surrounding environment and yo(r) tends 
to unity. J Since we envision a situation in 
which ro - d is much smaller than d,  it is 
reasonable to approximate the indirect 
effects by those of a hard sphere fluid at 
the same density with an appropriately 
chosen diameter d and therefore write 

This approximation is the first term in a 
systematic functional expansion of yo(r) 
about yd(r) (16, 17). Its physical meaning 
is illustrated schematically in Fig. 3b. 

The systematic expansion also pro- 
vides a simple way of choosing the ap- 
propriate value of the hard sphere diame- 
ter for any density and temperature. This 
criterion, first proposed in a somewhat 
different context by Percus and Yevick 
(18), is 

Here AAr) is the difference between the 
Boltzmann factors for ud(r) and uO(r), as 
shown in Fig. 3c. Thus the diameter is 
chosen so that the difference AAr) van- 
ishes when integrated over the volume 
while taking account of the environment 
through the factor yd(r). The resulting 
d(T,p) is a weakly decreasing function of 
temperature and/or density, in just the 
way Verlet's empirically determined di- 
ameter (10) was. Indeed, the theory re- 
produces Verlet's diameters to better 
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than 112 percent (14, 16).  By combining 
the computed diameter with Eqs. 4 and 
9, one obtains the formula 

g(r) = gdr)  = exp[ - uo(r)Ikerlyd(r) 
( 1  1 )  

which is indistinguishable on the scale of 
the graph from the solid line in Fig. 1 .  
Equation 1 1  thus provides a complete 
theory for the pair structure of a fluid in 
terms of the pair correlations of a hard 
sphere fluid. The latter are known in 
analytical form from the results of ap- 
proximate theory (19) and "exact" com- 
puter simulations (20) .  Further, it is not 
difficult to show that, except for large 
wave vectors, Eqs. 6, 10, and 1 1  imply 
S(k) = Sd(k) ,  thus justifying the hard 
sphere model for the structure factor. 

Thermodynamic Perturbation Theory 

An immediate consequence of the 
structural ideas underlying the WCA the- 
ory is a simple theory for the thermody- 
namic properties. In particular, when 
g(r) = go(r), thermodynamic properties 
can be obtained from first-order pertur- 
bation theory, which estimates the role 
of attractions by performing a reference 
system (that is, repulsive force system) 
average of the energy. This is analogous 
to the familiar perturbation result of 
Schrodinger quantum mechanics in 
which one computes the expectation val- 
ue of the energy by employing the wave 
function of the unperturbed Hamilto- 
nian. The standard first-order result (4 )  
for the Helmholtz free energy per unit 
volume is 

AIV -- AolV + (p212) J go(r)u(r)d3r 
(12) 

where A. is the free energy of the refer- 
ence fluid, which can be related to the 
free energy of the hard sphere fluid by 
the same procedure used to derive Eq. 9. 
Corrections to this formula are obtained 
from corrections to g(r) = go(r), and if 
the attractions truly had no effect on the 
structure, Eq. 12 would be exact. When 
ordered in powers of u(r)IkBT, the cor- 
rection terms to Eq. 12 generate the 
thermodynamic perturbation series first 
discussed in this context by Zwanzig (21) 
and by Buff and Schindler (22) .  Fortu- 
nately, when the van der Waals picture is 
accurate, these complicated correction 
terms are negligibly small (14, 20, 23) and 
calculations are simple enough to be 
performed on a desk calculator (20, 24).  

Other thermodynamic perturbation 
theories, using different potential separa- 
tions, have relied on the corrections to 

Fig. 3. Relation between a fluid with soft 
repulsive force (schematically indicated by 
fuzzy lines) and the hard sphere fluid (shown 
by solid lines). (a) All particles interact with 
continuous repulsive forces and r., - d gives a 
measure of the softness of the repulsive 
forces. (b) Illustration of Eq. 9, where the 
effects of the environment on the correlations 
between particles 1 and 2 are approximated 
by those of a hard sphere fluid. (c) Boltzmann 
factors for the soft and hard sphere fluids. 

Eq. 12 rather than the accuracy of the 
van der Waals picture. The best known 
of these alternatives is the Barker-Hen- 
derson (BH)  theory (25) ,  which was 
widely influential and stimulated much 
interest in the theory of liquids. In the 
BH theory the potential, w(r) ,  is divided 
into its positive (r  < u )  and negative 
(r  > a) parts. Such a separation seems 
reasonable for a discussion of a dilute 
gas, where particles are often far apart 
and the natural zero of energy is the large 
separation value of the potential. The 
close proximity of neighbors in a dense 
liquid, however, makes it profitable to 
focus on the change in energy for small 
displacements, that is, the force between 
particles, and allow the uniform back- 
ground to rescale the zero of energy to 
the potential minimum at ro, where the 
force changes from repulsive to attrac- 
tive. 

Since the BH reference potential 
leaves out the repulsive forces between 
u and ro, it underestimates the "size" of 
the particles, the most important struc- 
tural parameter in the van der Waals 
picture. The degree to which this issue is 
important is illustrated in Fig. 4. With 
the BH reference system, g(r) = go(r) is 
not a good approximation and the com- 
plicated second-order correction term to 
Eq. 12 is required to achieve accuracy 
comparable to that of the first-order 
WCA theory. While such calculations 
are possible for atomic fluids, they are 

generally impractical for polyatomic s ys- 
tems. We believe that the van der Waals 
picture, with its emphasis on optimizing 
the simple first-order term, offers a more 
useful starting point, both conceptually 
and for practical calculations. 

Lesson 

The preceding discussion of simple 
monatomic liquids has emphasized that 
the accuracy of the van der Waals pic- 
ture depends on a clear separation of the 
intermolecular potential into a short- 
ranged harshly repulsive portion and a 
longer ranged (usually attractive) part 
which is a relatively slowly varying func- 
tion of atomic coordinates. When such 
a separation exists, the intermolecular 
structure of the dense fluid can be accu- 
rately described by the van der Waals 
picture. Following standard chemical 
practice, we call such systems nonasso- 
ciated liquids. 

Often the repulsive forces are harsh 
enough that these systems can be mod- 
eled as hard core van der Waals materi- 
als. This provides a significant reduction 
of the complexities that would follow 
from realistic representations of intermo- 
lecular interactions, and it permits a sim- 
ple phenomenological description of sys- 
tems whose potentials are not accurately 
known by taking the size and shape 
parameters associated with the hard core 
model as adjustable parameters. 

The problems associated with under- 
standing the van der Waals material are 
those of determining the entropic effects 
of packing. The van der Waals picture 
itself gives no information on how these 
packing effects should be calculated. 
Thus it does not provide a self-contained 
theory, but rather a physical picture that 
focuses attention on the dominant role of 
correlations produced by hard cores. 
Fortunately, the statistical mechanics of 
hard core systems, while nontrivial, can 
often be successfully analyzed in terms 
of accurate approximations, and the so- 
lutions of these problems can usually be 
easily visualized. 

For example, when considering the 
hard sphere model of liquid argon, the 
properties of this van der Waals material 
can be well estimated from the analytical 
solutions of the Percus-Yevick equation 
(19) or even more accurate approxima- 
tions (26) for the hard sphere fluid. The 
pictures drawn from these calculations 
resemble both the qualitative observa- 
tions of a child playing with a box of 
marbles and those of more detailed sta- 
tistical analyses of randomly packed 
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spheres as  performed by Bernal(27) and 
co-workers. Similarly, the arrangements 
of molecules in liquid benzene (28, 29) 
are similar to the average arrangements 
of neighboring Cheerios in a bowl of the 
breakfast cereal, and a solution of argon 
in benzene should be similar to  the struc- 
ture achieved when blueberries are 
mixed in the Cheerios. 

harshly repulsive portion and a relatively 
slowly varying part. This is an essential 
step in developing an accurate theory 
based on the van der Waals picture. If an 
incorrect separation is made, fluids as  
simple as  liquid argon or methane would 
appear to  be  exceptions to  the van der 
Waals picture. Identifying this separa- 
tion for molecular fluids where the inter- 
molecular potential depends on many 
variables can be difficult, and a useful 
separation may not always be  possible. Exceptions and Qualifications 

Just as  nature is abundant with exam- 
ples of condensed phases that can be Several Examples r 

Fig. 4. Radial distribution functions for the 
repulsive force fluid g,(r) (solid line), the 
Barker-Henderson reference fluid gBH(r) 
(dashed line), and the Lennard-Jones liquid 
(circles) at a state near the triple point with 
pu3 = 0.87 and kBT/e = 0.75 as determined 
by molecular dynamics simulations (75). Here 
r is measured in units of u. 

successfully modeled as  van der Waals 
materials, it is also not difficult to  identi- 
fy those which cannot be. The hydrogen 

We now list several successful exam- 
ples of condensed phase theories based 

bonds, which give rise to  the local tetra- 
hedral ordering of molecules in aqueous 
systems (30), and the ionic interactions, 

on the van der Waals perspective. 
Molecular liquids, structure. The in- 

termolecular pair correlations of many 
which produce charge layering in fused 
salts (31), are examples of attractive 
forces that are so strong that they are 

polyatomic fluids have been interpreted 
with the reference interaction site model 
(RISM) theory (35). In this theory, mole- 

competitive with typical repulsions. For 
these cases the van der Waals picture 
breaks down. 

studied by Alder and co-workers (32) 
which is composed of hard spheres of 
diameter u mixed with a square-well 
species with the same hard core diameter 

cules are assumed to be composed of 
overlapping rigid spheres which are 
space-filling representations of the at- 

In the absence of detailed knowledge oms. A picture of an acetonitrile mole- 
cule modeled in this way is shown in Fig. 
5. The resulting total molecular shape 
is therefore nonspherical, giving rise to 

of intermolecular forces, one may never 
be sure if this simplified characterization 
of a particular liquid is valid. However, if 
there are no intermolecular hydrogen 
bonds, directional intermolecular cova- 

and an attractive well of range 1.50. The 
attractions between the square wells 
tend to make these particles cluster, and 
this clustering can occur without chang- 
ing and competing with the excluded 
volume correlations produced by the 

significant orientational correlations, 
though these correlations have little to 
do with those induced by molecular di- lent bonds, or ionic forces, then one may 

be fairly confident that the fluid is nonas- 
sociated and that at high densities it can 

hard cores. 
The use of hard cores to  mimic the 

effects of realistic repulsions provides an 

poles. The theory then employs an inte- 
gral equation (called the RISM equation) 
which yields an approximate though ac- be modeled as a van der Waals material. 

Liquids composed of CC14, C6H6, and 
even CH3CN (a molecule with dipole 

enormous practical simplification when 
applying the van der Waals picture. Un- 
fortunately, it can also be  a noticeable 

curate treatment of the pair correlations 
associated with the packing of molecules 
in such a system (36). The theory has moment of 4 debyes) are all examples of 

nonassociated liquids and, as  discussed 
below, all have been successfully ana- 
lyzed with the van der Waals picture. 

source of error. At extremely high densi- 
ties or for soft enough potentials, the 
differences from the hard core model 
must become more significant than the 

succeeded in interpreting the results of 
scattering experiments performed on 
various liquids including CC14 (28), C6H6 
(28, 29), CS2 (28, 3 9 ,  CHC13 (38), and 
CH3CN (39). Figure 5 shows a repre- 
sentative comparison between theory 
and experiment for CH3CN. 

Molecular liquids, diffusion. The hard 
sphere model for self-diffusion in liquids 
dates back to the time of Enskog (40). 

Of course, even for these cases where 
there are no strong associative forces, 
the picture will break down at  low densi- 

short wavelength differences seen in liq- 
uid argon and easily understood with 
WCA theory. Examples are found in the ties where the compressibility is suffi- 

ciently high to allow for relatively long 
wavelength fluctuations [that is, at lower 

comparison of the hard sphere structure 
factor with S(k)  for liquid metals (33) 
(where the effective repulsive cores be- densities, the repulsive cores are not 

nearly as effective in screening (16) the 
interparticle correlations caused by the 

tween atoms are relatively soft), and 
when the structure of the hard sphere 
solid is compared with that of the Len- 

Quantitative calculations, however, be- 
gan with the computer simulation studies 
of Alder and co-workers (41). With the attractions]. For  example, Eq.  12 pre- 

dicts incorrect (classical) behavior at  the 
critical point. 

Still another source of inaccuracies in 

nard-Jones solid (34) (where the density 
is very high). These are practical quanti- 
tative issues, however, and they do not 

simulation results in hand, Levesque and 
Verlet (11) showed that the self-diffusion 
constant of an atomic liquid can be  well 

the van der Waals picture exists in liquid 
mixtures. While the high density of the 
fluid will hinder fluctuations in the total 
density, concentration fluctuations are 
not necessarily suppressed. The latter 

contradict the qualitative validity of the 
hard sphere model or the general van der 
Waals picture. Indeed, in both examples 

approximated by that of the hard sphere 
fluid. For  molecular fluids, however, the 
nonspherical shape of particles intro- 

mentioned the attractive interactions 
have little effect on the structure. 

Finally, in all these remarks it is as- 

duces the additional feature of rotation- 
translation coupling. This coupling tends 
to lower the diffusion constant from what can lead to important structural effects 

which must be associated with the longer 
ranged interactions. This point is illus- 

sumed that it is possible to make a physi- 
cally meaningful separation of the inter- 
particle potential into a short-ranged 

one would find in its absence since the 
coupling introduces additional channels 
for dissipating velocity correlations. trated by a model system invented and 
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Although a quantitative theory direct- 
ly treating diffusion in a fluid of hard 
nonspherical objects has not yet been 
developed, it can be argued (42) that a 
reasonable account of this phenomenon 
is given by 

where D is the self-diffusion constant of 
the molecular liquid, Dd is the diffusion 
constant of the hard sphere fluid at the 
same packing fraction (that is, p times 
the space filling volume of a molecule or 
particle in the fluid), and the parameter A 
differs from unity according to the extent 
of the translation-rotation coupling. For  
liquid CC14 (42), A = 112. Equation 13 
and its extension to the mutual diffusion 
constants of mixtures (43) have been 
successfully applied to  numerous liquids 
and have provided a law of correspond- 
ing states for diffusion in nonassociated 
liquids (44). The model also provides a 
basis for understanding Hildebrand's 
concept of fluidity, which says that the 
inverse of viscosity is proportional to  the 
free volume available to  molecules in a 
liquid (45). Further, the extension of this 
model to rotational diffusion (46) has 
provided a means for interpreting the 

density and temperature dependence of 
rotational relaxation times measured by 
nuclear magnetic resonance in terms of 
the average collision frequencies in a 
hard sphere fluid (47). 

Liquid metals. While properties asso- 
ciated with the conduction electrons are 
beyond the scope of a simple van der 
Waals theory, the hard sphere model has 
proved successful in several studies of 
the structure (15, 48, 49), diffusion (50- 
52), and viscosity (53) of liquid metals. 
The various workers differ in the proce- 
dures used to estimate the temperature- 
dependent hard sphere diameters, but 
they all find reasonable values for those 
parameters. The model succeeds at  pre- 
dicting both the magnitude and the tem- 
perature dependence of the transport co- 
efficients. For  the structure factor, S(k), 
precise agreement with the hard sphere 
model is not to be expected because of 
the effects of the softness of the inter- 
atomic potentials. Indeed, it has been 
shown how information concerning the 
softness of the potential can be extracted 
from the deviations of the experimental 
data from the hard sphere structure fac- 
tor, SAk) (33, 49). 

Waseda (48) reviewed data for 42 liq- 
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Fig. 5. Structure factors, S(k) ,  for scattering neutrons and x-rays from liquid acetonitrile. The 
circles represent experimental points. The solid lines are the predictions of the RISM theory, 
using the hard core model drawn at the upper right (atoms 1 ,  2, and 3 are hydrogens; atoms 4 
and 5 are carbons; and atom 6 is nitrogen). The dashed line shows the scattering cross section 
associated with only single independent molecules as opposed to the full liquid intermolecular 
correlations. [After Hsu and Chandler (39)] 

uid metals and concluded that the hard 
sphere fluid provides a suitable model 
for understanding all of them. Further- 
more, he classified them into three cate- 
gories according to the extent of the 
similarity between the measured struc- 
ture and the hard sphere structure. Thir- 
ty-three of the 42, including all the transi- 
tion metals studied, are in the category 
that agrees most closely with the hard 
sphere fluid. Waseda also studied metal- 
metal alloys and concluded that, while 
many of them had structures consistent 
with the structure of a fluid of a mixture 
of hard spheres, some metal-metal alloys 
showed evidence of compound forma- 
tion, indicating that they are not well 
described as van der Waals materials. 

Solutions. N o  discussion of the van 
der Waals picture would be complete 
without mentioning Hildebrand's regular 
solution theory (54). It  is a remarkable 
observation (55) that when hard spheres 
of various different sizes appropriate for 
solutions of real molecules are mixed 
together in such a way that the total 
volume is unchanged, the entropy of 
mixing is well approximated by the ideal 
solution formula. While the fundamental 
reasons for this behavior are not entirely 
understood, the implication of this ob- 
servation is clear. According to the van 
der Waals picture, entropic properties 
are determined by packing effects, and 
therefore the entropy of mixing of solu- 
tions of approximately spherical mole- 
cules at  constant total volume should be 
the same as that for an ideal solution. 
Indeed, this behavior is the premise of 
regular solution theory, which has been 
developed into a very successful way of 
estimating the thermodynamic proper- 
ties of solutions, and the many liquid 
mixtures which act in this way are called 
regular solutions (54). In more quantita- 
tive work, Snider and Herrington (56) 
applied the theory of Longuet-Higgins 
and Widom (2) to a number of binary 
mixtures and found generally good 
agreement with experiment. 

Vibrational dephasing. The relaxation 
of intramolecular vibrational modes of 
molecules in condensed phases has been 
the focus of much recent research (57, 
58). The dephasing processes are strong- 
ly affected by the fluctuating force fields 
associated with molecules that move 
about in the neighborhood of the tagged 
molecule. Van der Waals theories for 
these fluctuating forces were developed 
by Fischer and Laubereau (59) and by 
Oxtoby (60). In these theories, fluctua- 
tions are assumed to scale with the colli- 
sion frequency (or viscosity) and the 
dephasing rate is therefore predicted to 
be proportional to  the collision frequen- 
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cy (or viscosity) in a hard sphere fluid. 
However, experiments by Jonas and co- 
workers (61) show that dephasing rates 
increase with pressure o r  density to a 
much smaller extent than predicted by 
the collision theories. In fact, in certain 
cases, the dephasing rate decreases with 
increasing liquid density. An explanation 
of this curious behavior was recently 
developed (62) by considering the differ- 
ent roles of repulsions and attractions. 
While the fluctuations in the former are 
short wavelength and do increase with 
pressure as predicted by hard sphere 
collision frequencies, the fluctuations in 
the latter are relatively long wavelength 
and as  such tend to decrease with in- 
creasing density o r  pressure. Since vi- 
brational modes of molecules will couple 
to  the environment with both types of 
interactions, two competing effects are 
present. A van der Waals treatment with 
this perspective succeeded in explaining 
the dephasing data in a variety of sys- 
tems (62). 

Liquid crystals. Nematic liquid crys- 
tals are made up of long molecules 
whose axes are oriented in roughly the 
same direction. Onsager (63) first used 
the van der Waals picture to study such 
systems, but his treatment of the packing 
effects is valid only in an unphysical 
limit. Modern approaches, such as  the 
scaled particle theory (64), have im- 
proved the situation somewhat, but to 
date no fully satisfactory theory for the 
statistical mechanics of long hard objects 
has been applied. As a recent simulation 
on an idealized system of hard platelets 
has indicated (65), such a theory should 
capture many qualitative features of the 
nematic phase and the transition from 
the isotropic liquid, although the realistic 
shape and/or flexibility of the long mole- 
cules will undoubtedly have to be taken 
into account in comparisons with real 
experiments. 

Freezing a n d  melting. Since packing 
considerations induced by the repulsive 
forces dominate the structure of dense 
nonassociated liquids, it is natural to  
suppose they will play an equally impor- 
tant role at the still higher densities of the 
crystalline o r  amorphous solid states and 
in the fluid-solid transition. The good 
agreement between the distribution func- 
tions in Fig. 6 shows the validity of this 
idea for the Lennard-Jones solid near the 
triple point. Both the repulsive force and 
Lennard-Jones systems have a face-cen- 
tered cubic (fcc) lattice structure, con- 
sistent with efficient packing of the re- 
pulsive cores. The peaks in the (angular- 
ly averaged) g(r) are broadened by ther- 
mal vibrations but clearly show the 
successive neighbor shells in the fcc lat- 

r 

Fig. 6. Radial distribution functions for the 
Lennard-Jones solid (solid line) and the repul- 
sive force solid (dashed line) at a state near 
the triple point with po3 = 0.98 and kBT/ 
E = 0.75. For comparison, g(r )  for the coex- 
isting Lennard-Jones liquid (chain-dotted line) 
at pa3 = 0.87 (shown in Fig. 4) is also includ- 
ed. Here r is measured in units of u. 

tice. As first recognized by Longuet- 
Higgins and Widom (2), the attractive 
interactions in the van der Waals picture 
play an essentially passive role in the 
fluid-solid transition, widening the re- 
gion of two-phase coexistence over that 
found in the repulsive force system alone 
(66), but introducing no new structural 
correlations (67). 

An exception to this picture, related to 
that discussed earlier for liquid mixtures, 
arises when there are different solid 
structures for the repulsive force system 
with very nearly the same free energy 
(68). For  example, the fcc structure is 
only very slightly favored by entropy 
over the hexagonal close-packed struc- 
ture for hard spheres and both structures 
have the same limiting close-packed den- 
sity (69). In such a case, the detailed 
form of the attractive interactions can 
favor one nearly degenerate structure 
over the other. 

It is interesting to  compare the solid 
g(r) to  that of the coexisting liquid, also 
shown in Fig. 6. The higher density of 
the solid has been accommodated by a 
transition to  a topologically different 
structure-an ordered fcc lattice where 
molecules in one layer fit into the inter- 
stitial "holes" in the layers above and 
below. Although the high density and 
interlocking structure of the solid pre- 
vent significant diffusion or  particle ex- 
change, there is still freedom of motion 
for a molecule within the "cage" formed 
by its nearest neighbors as well as long- 
wavelength distortions of the cage struc- 
ture itself. This configurational freedom 
provides a source of entropy which sta- 
bilizes the ordered solid, relative to a 
disordered structure, a t  high densities. A 

study of the repulsive force system, and 
particularly the limiting case of the hard 
sphere system, is instructive in bringing 
out the importance of density, packing 
efficiency, and entropy in the fluid-solid 
transition. Such features are often slight- 
ed in conventional treatments of the sol- 
id based on the harmonic approximation. 

Amorphous a n d  glassy materials. The 
hard sphere model also gives us insight 
into nonequilibrium amorphous and 
glassy solid structures. Computer simu- 
lations have shown that for densities 
p > p,, where p, is 73 percent of the 
close-packed density p,,, the ordered fcc 
solid structure is the thermodynamically 
stable phase (69). However, it is possible 
to arrange hard spheres in a disordered 
structure at densities greater than p,. 
Following Bernal (70), Scott (71), and 
Finney (72) ,  one can experimentally pro- 
duce such packings by jamming an array 
of ball bearings into an irregularly 
shaped container so that nearest neigh- 
bor spheres are touching one another. If 
the walls of the container are corrugated 
so that the "nucleation" of a close- 
packed solid layer is inhibited, usually 
one ends up with a disordered arrange- 
ment which is called a random close- 
packed structure. The maximum packing 
density that can be so achieved is only 
about 85 percent of p,,. 

Bernal (70) suggested that the random 
close-packed structure be taken as  a 
model for the equilibrium structure of a 
dense fluid. This suggestion was histori- 
cally very important, since it emphasized 
the role of repulsive forces and packing 
in determining the structure of a fluid 
and poin:ed out the topologically disor- 
dered nature of the fluid state at a time 
when lattice models and hole theories of 
liquids were very popular. However, in 
detail the model is unsatisfactory. Parti- 
cles are jammed in one configuration so 
that very little diffusion or  particle ex- 
change is possible. Yet the ability to 
change configurations-that is, to  flow- 
is one of the characteristic differences 
between a fluid and a solid and a major 
source of the increase in entropy on 
melting. 

Rather, it has been recognized that the 
random close-packed models are more 
appropriate to  describe the properties of 
supercooled liquids and, in particular, 
liquid metal mixtures below the "glass 
transition." By very rapidly quenching a 
liquid, it is sometimes possible to avoid 
crystallization and achieve a metastable 
glassy state in which one particular con- 
figuration of the disordered liquid is 
"frozen in." Diffusion and structural re- 
laxation occur at  rates many orders of 
magnitude lower than that observed in 
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the stable fluid state. The fact that the 
effective hard sphere diameter increases 
as the temperature is decreased allows a 
qualitative understanding of one impor- 
tant source of the reduced freedom of 
motion in the supercooled glassy state. 
For many purposes it is useful to picture 
particles in the glass as locked into place 
by the repulsive cores of their neighbors, 
as suggested by the random close- 
packed model. 

Of course, any static model cannot 
describe the detailed properties of a non- 
equilibrium system, which depend on the 
past history, the rate of cooling, the 
amount of structural relaxation, and oth- 
er features which only a dynamical the- 
ory could hope to explain. Nonetheless, 
such is the dominance of packing consid- 
erations that a model which correctly 
takes them into account will correctly 
describe many gross structural features. 
Thus the random close-packed models 
serve as the starting point for more so- 
phisticated (and complicated) treatments 
.(73). 

As we apply the van der Waals ideas 
to more and more complex systems we 
will undoubtedly find that a more de- 
tailed analysis is needed for quantitative 
agreement with experiment. The case of 
simple liquids is somewhat apomalous, 
in that the van der Waals picture pro- 
vides so complete a description. Howev- 
er, in more complex systems, these ideas 
may prove even more important, not as a 
quantitative theory, but as a conceptual 
guide in emphasizing the important pack- 
ing constraints which more detailed the- 
ories must satisfy. Even today, a century 
after the time of van der Waals, these 
ideas continue to play a central role in 
understanding the properties of con- 
densed matter. 
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