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Optimization by 
Simulated Annealing 

S. Kirkpatrick, C. D. Gelatt, Jr. ,  M. P. Vecchi 

In this article we briefly review the 
central constructs in combinatorial opti- 
mization and in statistical mechanics and 
then develop the similarities between the 
two fields. We show how the Metropolis 
algorithm for approximate numerical 
simulation of the behavior of a many- 
body system at a finite temperature pro- 
vides a natural tool for bringing the tech- 
niques of statistical mechanics to bear on 
optirn~ization. 

We have applied this point of view to a 
number of problems arising in optimal 
design of computers. Applications to 
partitioning, component placement, and 
wiring of electronic systems are de- 
scribed in this article. In each context, 
we introduce the problem and discuss 
the improvements available from optimi- 
zation. 

Of classic optimization problems, the 
travel~~ng salesman problem has received 
the most intensive study. To test the 
power of simulated annealing, we used 
the algorithm on traveling salesman 
problems with as many as several thou- 
sand cities. This work is described in a 
final section, followed by our conclu- 
sions. 

Combinatorial Optimization 

The subject of combinatorial optimiza- 
tion (1) consists of a set of problems that 
are central to the disciplines of computer 
science: and engineering. Research in this 
area aims at developing efficient tech- 
niques for finding minimum or maximum 
values of a function of very many inde- 
pendent variables (2). This function, usu- 
ally called the cost function or objective 
function, represents a quantitative mea- 

with N, so that in practice exact solu- 
tions can be attempted only on problems 
involving a few hundred cities or less. 
The traveling salesman belongs to the 
large class of NP-complete (nondeter- 
ministic polynomial time complete) 
problems, which has received extensive 
study in the past 10 years (3). No method 
for exact solution with a computing ef- 
fort bounded by a power of N has been 
found for any of these problems, but if 
such a solution were found, it could be 
mapped into a procedure for solving all 
members of the class. It is not known 

sure of the "goodness" of some complex what features of the individual problems 
system. The cost function depends on in the NP-complete class are the cause of 
the detailed configuration of the many their difficulty. 
parts of that system. We are most famil- Since the NP-complete class of prob- 
iar with optimization problems occurring lems contains many situations of practi- 
in the physical design of computers, so cal interest, heuristic methods have been 
examples used below are drawn from developed with computational require- 

Summary. There is a deep and useful connection between statistical mechanics 
(the behavior of systems with many degrees of freedom in thermal equilibrium at a 
finite temperature) and multivariate or combinatorial optimization (finding the mini- 
mum of a given function depending on many parameters). A detailed analogy with 
annealing in solids provides a framework for optimization of the properties of very 
large and complex systems. This connection to statistical mechanics exposes new 
information and provides an unfamiliar perspective on traditional optimization prob- 
lems and methods. 

that context. The number of variables 
involved may range up into the tens of 
thousands. 

The classic example, because it is so 
simply stated, of a combinatorial optimi- 
zation problem is the traveling salesman 
problem. Given a list of N cities and a 
means of calculating the cost of traveling 
between any two cities, one must plan 
the salesman's route, which will pass 
through each city once and return finally 
to the starting point, minimizing the total 
cost. Problems with this flavor arise in 
all areas of scheduling and design. Two 
subsidiary problems are of general inter- 
est: predicting the expected cost of the 
salesman's optimal route, averaged over 
some class of typical arrangements of 
cities, and estimating or obtaining 
bounds for the computing effort neces- 
sary to determine that route. 

All exact methods known for deter- 
mining an optimal route require a com- 
puting effort that increases exponentially 

ments proportional to small powers of N. 
Heuristics are rather problem-specific: 
there is no guarantee that a heuristic 
procedure for finding near-optimal solu- 
tions for one NP-complete problem will 
be effective for another. 

There are two basic strategies for 
heuristics: "divide-and-conquer" and it- 
erative improvement. In the first, one 
divides the problem into subproblems of 
manageable size, then solves the sub- 
problems. The solutions to the subprob- 
lems must then be patched back togeth- 
er. For this method to produce very good 
solutions, the subproblems must be natu- 
rally disjoint, and the division made must 
be an appropriate one, so that errors 
made in patching do not offset the gains 
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obtained in applying more powerful 
methods to the subproblems (4). 

In iterative improvement (5, 6) ,  one 
starts with the system in a known config- 
uration. A standard rearrangement oper- 
ation is applied to all parts of the system 
in turn, until a rearranged configuration 
that improves the cost function is discov- 
ered. The rearranged configuration then 
becomes the new configuration of the 
system, and the process is continued 
until no further improvements can be 
found. Iterative improvement consists of 
a search in this coordinate space for 
rearrangement steps which lead down- 
hill. Since this search usually gets stuck 
in a local but not a global optimum, it is 
customary to carry out the process sev- 
eral times, starting from different ran- 
domly generated configurations, and 
save the best result. 

There is a body of literature analyzing 
the results to be expected and the com- 
puting requirements of common heuris- 
tic methods when applied to the most 
popular problems (1-3). This analysis 
usually focuses on the worst-case situa- 
tion-for instance, attempts to bound 
from above the ratio between the cost 
obtained by a heuristic method and the 
exact minimum cost for any member of a 
family of similarly structured problems. 
There are relatively few discussions of 
the average performance of heuristic al- 
gorithms, because the analysis is usually 
more difficult and the nature of the ap- 
propriate average to study is not always 
clear. We will argue that as the size of 
optimization problems increases, the 
worst-case analysis of a problem will 
become increasingly irrelevant, and the 
average performance of algorithms will 
dominate the analysis of practical appli- 
cations. This large number limit is the 
domain of statistical mechanics. 

Statistical Mechanics 

Statistical mechanics is the central dis- 
cipline of condensed matter physics, a 
body of methods for analyzing aggregate 
properties of the large numbers of atoms 
to be found in samples of liquid or solid 
matter (7). Because the number of atoms 
is of order per cubic centimeter, 
only the most probable behavior of the 
system in thermal equilibrium at a given 
temperature is observed in experiments. 
This can be characterized by the average 
and small fluctuations about the average 
behavior of the system, when the aver- 
age is taken over the ensemble of identi- 
cal systems introduced by Gibbs. In this 
ensemble, each configuration, defined 
by the set of atomic positions, {r;), of the 

system is weighted by its Boltzmann 
probability factor, exp(-E({r,))/kBT), 
where E({r,})  is the energy of the config- 
uration, kB is Boltzmann's constant, and 
T is temperature. 

A fundamental question in statistical 
mechanics concerns what happens to the 
system in the limit of low temperature- 
for example, whether the atoms remain 
fluid or solidify, and if they solidify, 
whether they form a crystalline solid or a 
glass. Ground states and configurations 
close to them in energy are extremely 
rare among all the configurations of a 
macroscopic body, yet they dominate its 
properties at low temperatures because 
as T is lowered the Boltzmann distribu- 
tion collapses into the lowest energy 
state or states. 

As a simplified example, consider the 
magnetic properties of a chain of atoms 
whose magnetic moments, y,, are al- 
lowed to point only "up" or "down," 
states denoted by y, = *I.  The interac- 
tion energy between two such adjacent 
spins can be written Jy ,y i+,  . Interaction 
between each adjacent pair of spins con- 
tributes ?J to the total energy of the 
chain. For an N-spin chain, if all configu- 
rations are equally likely the interaction 
energy has a binomial distribution, with 
the maximum and minimum energies giv- 
en by t N J  and the most probable state 
having zero energy. In this view, the 
ground state configurations have statisti- 
cal weight exp(-NI2) smaller than the 
zero-energy configurations. A Boltz- 
mann factor, exp(-E/kBT), can offset 
this if kBT is smaller than J .  If we focus 
on the problem of finding empirically the 
system's ground state, this factor is seen 
to drastically increase the efficiency of 
such a search. 

In practical contexts, low temperature 
is not a sufficient condition for finding 
ground states of matter. Experiments 
that determine the low-temperature state 
of a material-for example, by growing a 
single crystal from a melt-are done by 
careful annealing, first melting the sub- 
stance, then lowering the temperature 
slowly, and spending a long time at tem- 
peratures in the vicinity of the freezing 
point. If this is not done, and the sub- 
stance is allowed to get out of equilibri- 
um, the resulting crystal will have many 
defects, or the substance may form a 
glass, with no crystalline order and only 
metastable, locally optimal structures. 

Finding the low-temperature state of a 
system when a prescription for calculat- 
ing its energy is given is an optimization 
problem not unlike those encountered in 
combinatorial optimization. However, 
the concept of the temperature of a phys- 
ical system has no obvious equivalent in 

the systems being optimized. We will 
introduce an effective temperature for 
optimization, and show how one can 
carry out a simulated annealing process 
in order to obtain better heuristic solu- 
tions to combinatorial optimization prob- 
lems. 

Iterative improvement, commonly ap- 
plied to such problems, is much like the 
microscopic rearrangement processes 
modeled by statistical mechanics, with 
the cost function playing the role of 
energy. However, accepting only rear- 
rangements that lower the cost function 
of the system is like extremely rapid 
quenching from high temperatures to 
T = 0, so it should not be surprising that 
resulting solutions are usually metasta- 
ble. The Metropolis procedure from sta- 
tistical mechanics provides a generaliza- 
tion of iterative improvement in which 
controlled uphill steps can also be incor- 
porated in the search for a better solu- 
tion. 

Metropolis et al. (8),  in the earliest 
days of scientific computing, introduced 
a simple algorithm that can be used to 
provide an efficient simulation of a col- 
lection of atoms in equilibrium at a given 
temperature. In each step of this algo- 
rithm, an atom is given a small random 
displacement and the resulting change, 
AE, in the energy of the system is com- 
puted. If AE 5 0, the displacement is 
accepted, and the configuration with the 
displaced atom is used as the starting 
point of the next step. The case AE > 0 
is treated probabilistically: the probabili- 
ty that the configuration is accepted is 
P(AE) = exp(-AE/kBn. Random num- 
bers uniformly distributed in the interval 
(0,l) are a convenient means of imple- 
menting the random part of the algo- 
rithm. One such number is selected and 
compared with P(AE). If it is less than 
P(AE), the new configuration is retained; 
if not, the original configuration is used 
to start the next step. By repeating the 
basic step many times, one simulates the 
thermal motion of atoms in thermal con- 
tact with a heat bath at temperature T. 
This choice of P(AE) has the conse- 
quence that the system evolves into a 
Boltzmann distribution. 

Using the cost function in place of the 
energy and defining configurations by a 
set of parameters {xi), it is straightfor- 
ward with the Metropolis procedure to 
generate a population of configurations 
of a given optimization problem at some 
effective temperature. This temperature 
is simply a control parameter in the same 
units as the cost function. The simulated 
annealing process consists of first "melt- 
ing" the system being optimized at a 
high effective temperature, then lower- 
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ing the temperature by slow stages until 
the system "freezes" and no further 
changes occur. At each temperature, the 
simulation must proceed long enough for 
the !system to reach a steady state. The 
sequence of temperatures and the num- 
ber of rearrangements of the {xi) attempt- 
ed to reach equilibrium at each tempera- 
ture can be considered an annealing 
schedule. 

Annealing, as implemented by the Me- 
tropolis procedure, differs from iterative 
improvement in that the procedure need 
not get stuck since transitions out of a 
local optimum are always possible at 
nonzero temperature. A second and 
more important feature is that a sort of 
adaptive divide-and-conquer occurs. 
Gross features of the eventual state of 
the system appear at higher tempera- 
tures; fine details develop at lower tem- 
peratures. This will be discussed with 
specific examples. 

Statistical mechanics contains many 
useful tricks for extracting properties of 
a macroscopic system from microscopic 
averages. Ensemble averages can be ob- 
tained from a single generating function, 
the partition function, Z, 

Z = Tr exp - (;",I 
in which the trace symbol, Tr, denotes a 
sum over all possible configurations of 
the atoms in the sample system. The 
logarithm of Z, called the free energy, 
F(T), contains information about the av- 
erage energy, <E(T)>, and also the en- 
tropy, S(T), which is the logarithm of the 
number of configurations contributing to 
the ensemble at T: 

Boltzmann-weighted ensemble averages 
are easily expressed in terms of deriva- 
tives of F. Thus the average energy is 
given by 

and the rate of change of the energy with 
respect to the control parameter, T, is 
related to the size of typical variations in 
the energy by 

In statistical mechanics C(T) is called the 
specirftc heat. A large value of C signals a 
change in the state of order of a system, 
and can be used in the optimization 
context to indicate that freezing has be- 
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gun and hence that very slow cooling is 
required. It can also be used to deter- 
mine the entropy by the thermodynamic 
relation 

Integrating Eq. 5 gives 

where T I  is a temperature at which S is 
known, usually by an approximation val- 
id at high temperatures. 

The analogy between cooling a fluicl 
and optimization may fail in one impor- 
tant respect. In ideal fluids all the atoms 
are alike and the ground state is a regular 
crystal. A typical optimization problem 
will contain many distinct, noninter- 
changeable elements, so a regular solu- 
tion is unlikely. However, much re- 
search in condensed matter physics is 
directed at systems with quenched-in 
randomness, in which the atoms are not 
all alike. An important feature of such 
systems, termed "frustration," is that 
interactions favoring different and in- 
compatible kinds of ordering may be 
simultaneously present (9). The magnet- 
ic alloys known as "spin glasses," which 
exhibit competition between ferromag- 
netic and antiferromagnetic spin order- 
ing, are the best understood example of 
frustration (10). It is now believed that 
highly frustrated systems like spin glass- 
es have many nearly degenerate random 
ground states rather than a single ground 
state with a high degree of symmetry. 
These systems stand in the same relation 
to conventional magnets as glasses do to 
crystals, hence the name. 

The physical properties of spin glasses 
at low temperatures provide a possible 
guide for understanding the possibilities 
of optimizing complex systems subject 
to conflicting (frustrating) constraints. 

Physical Design of Computers 

The physical design of electronic sys- 
tems and the methods and simplifica- 
tions employed to automate this process 
have been reviewed (11, 12). We first 
provide some background and defini- 
tions related to applications of the simu- 
lated annealing framework to specific 
problems that arise in optimal design of 
computer systems and subsystems. 
Physical design follows logical design. 
After the detailed specification of the 
logic of a system is complete, it is neces- 
sary to specify the precise physical real- 
ization of the system in a particular tech- 
nology. 

This process is usually divided into 
several stages. First, the design must be 
partitioned into groups small enough to 
fit the available packages, for example, 
into groups of circuits small enough to fit 
into a single chip, or into groups of chips 
and associated discrete components that 
can fit onto a card or other higher level 
package. Second, the circuits are as- 
signed specific locations on the chip. 
This stage is usually called placement. 
Finally, the circuits are connected by 
wires formed photolithographically out 
of a thin metal film, often in several 
layers. Assigning paths, or routes, to the 
wires is usually done in two stages. In 
rough or global wiring, the wires are 
assigned to regions that represent sche- 
matically the capacity of the intended 
package. In detailed wiring (also called 
exact embedding), each wire is given a 
unique complete path. From the detailed 
wiring results, masks can be generated 
and chips made. 

At each stage of design one wants to 
optimize the eventual performance of the 
system without compromising the feasi- 
bility of the subsequent design stages. 
Thus partitioning must be done in such a 
way that the number of circuits in each 
partition is small enough to fit easily into 
the available package, yet the number of 
signals that must cross partition bound- 
aries (each requiring slow, power-con- 
suming driver circuitry) is minimized. 
The major focus in placement is on mini- 
mizing the length of connections, since 
this translates into the time required for 
propagation of signals, and thus into the 
speed of the finished system. However, 
the placements with the shortest implied 
wire lengths may not be wirable, because 
of the presence of regions in which the 
wiring is too congested for the packag- 
ing technology. Congestion, therefore, 
should also be anticipated and minimized 
during the placement process. In wiring, 
it is desirable to maintain the minimum 
possible wire lengths while minimizing 
sources of noise, such as cross talk be- 
tween adjacent wires. We show in this 
and the next two sections how these 
conflicting goals can be combined and 
made the basis of an automatic optimiza- 
tion procedure. 

The tight schedules involved present 
major obstacles to automation and opti- 
mization of large system design, even 
when computers are employed to speed 
up the mechanical tasks and reduce the 
chance of error. Possibilities of feed- 
back, in which early stages of a design 
are redone to solve problems that be- 
came apparent only at later stages, are 
greatly reduced as the scale of the over- 
all system being designed increases. Op- 



The objective function f has precisely 
the form of a Hamiltonian, or energy 
function, studied in the theory of random 
magnets, when the common simplifying 
assumption is made that the spins, pi, 
have only two allowed orientations (up 
or down), as in the linear chain example 
of the previous section. It combines lo- 
cal, random, attractive ("ferromagnet- 
ic") interactions, resulting from the aii's, sgl-- -, 

Boundary 
with a long-range repulsive ("antiferro- 
magnetic") interaction due to A. No con- 
figuration of the {ki} can simultaneously Fig. 2. Construction of a horizontal net-cross- 

ing histogram. satisfy all the interactions, so the system 
is "frustrated," in the sense formalized 
by Toulouse (9). 

0 1000~ 2000 3000 4000 5000 6000 
Sum of pins on the two chips 

Fig. 1. Distribution of total number of pins 
required in two-way partition of a micro- 
processor at various temperatures. Arrow in- 
dicates best solution obtained by rapid 
quenching as opposed to annealing. 

circuits in a typical system could be 
If the a0 are completely uncorrelated, 

it can be shown (13) that this Hamilto- 
nian has a spin glass phase at low tem- 
peratures. This implies for the associated 

connected with short-range interactions 
if they were embedded in a space with 
dimension between two and three. Un- 
correlated connections, by contrast, can 

magnetic problem that there are many 
degenerate "ground states" of nearly 
equal energy and no obvious symmetry. 

be thought of as infinite-dimensional, 
since they are never short-range. 

The identification of Eq. 7 as a spin timization procedures that can incorpo- 
rate, even approximately, information 
about the chance of success of later 
stages of such complex designs will be 
increasingly valuable in the limit of very 
large scale. 

System performance is almost always 
achieved at the expense of design conve- 
nience. The partitioning problem pro- 
vides a clean example of this. Consider 
N circuits that are to be partitioned be- 
tween two chips. Propagating a signal 
across a chip boundary is always slow, 
so the number of signals required to 
cross between the two must be mini- 
mized. Putting all the circuits on one 
chip eliminates signal crossings, but usu- 
ally there is no room. Instead, for later 
convenience, it is desirable to divide the 
circuits about equally. 

If we have connectivity information in 
a matrix whose elements {au} are the 
number of signals passing between cir- 
cuits i and j ,  and we indicate which chip 
circuit i is placed on by a two-valued 
variable pi = k 1, then N,, the number 
of signals that must cross a chip bound- 
ary is given by Zi>j(a,.14)(ki - Fj)2. Cal- 
culating Xipi gives the difference be- 
tween the numbers of circuits on the two 
chips. Squaring this imbalance and intro- 
ducing a coefficient, A ,  to express the 
relative costs of imbalance and boundary 
crossings, we obtain an objective func- 
tion, f ,  for the partition problem: 

The magnetic state of a spin glass is very 
stable at low temperatures (14), so the 
ground states have energies well below 

glass Hamiltonian is not affected by the 
reduction to a two- or three-dimensional 
problem, as long as AN = 212. The de- 

the energies of the random high-tempera- 
ture states, and transforming one ground 
state into another will usually require 

gree of ground state degeneracy in- 
creases with decreasing dimensionality. 
For the uncorrelated model, there are 
typically of order N " ~  nearly degenerate 
ground states (I#), while in two and three 
dimensions, 2aN,  for some small value, 

considerable rearrangement. Thus this 
analogy has several implications for opti- 
mization of partition: 

1) Even in the presence of frustration, 
significant improvements over a random 
starting partition are possible. 

a, are expected (16). This implies that 
finding a near-optimum solution should 
become easier, the lower the effective 
dimensionality of the problem. The en- 2) There will be many good near-opti- 

ma1 solutions, so a stochastic search 
procedure such as simulated annealing 
should find some. 

3) No one of the ground states is sig- 
nificantly better than the others, so it is 

tropy, measurable as shown in Eq. 6, 
provides a measure of the degeneracy of 
solutions. S(T) is the logarithm of the 
number of solutions equal to or better 
than the average result encountered at 
temperature T. not very fruitful to search for the abso- 

lute optimum. 
In developing Eq. 7 we made several 

severe simplifications, considering only 

As an example of the partitioning 
problem, we have taken the logic design 
for a single-chip IBM "370 microproces- 
sor" (17) and considered partitioning it two-way partitioning and ign~ring the 

fact that most signals connect more than 
two circuits. Objective functions analo- 

into two chips. The original design has 
approximately 5000 primitive logic gates 
and 200 external signals (the chip has 200 gous to f that include both complications 

are easily constructed. They no longer 
have the simple quadratic form of Eq. 7, 

logic pins). The results of this study are 
plotted in Fig. 1. If one randomly assigns 
gates to the two chips, one finds the but the qualitative feature, frustration, 

remains dominant. The form of the Ham- 
iltonian makes no difference in the Me- 
tropolis Monte Carlo algorithm. Evalua- 
tion of the change in function when a 
circuit is shifted to a new chip remains 

distribution marked T = m for the num- 
ber of pins required. Each of the two 
chips (with about 2500 circuits) would 
need 3000 pins. The other distributions 
in Fig. 1 show the results of simulated 
annealing. rapid as the definition of f becomes 

more complicated. 
It is likely that the a" are somewhat 

correlated, since any design has consid- 
erable logical structure. Efforts to under- 
stand the nature of this structure by 

Monte Carlo annealing is simple to 
implement in this case. Each proposed 
configuration change simply flips a ran- Reasonable values of A should satisfy 

A 5 212, where z is the average number 
of circuits connected to a typical circuit 
(fan-in plus fan-out). Choosing A = z12 
implies giving equal weight to changes in 
the balance and crossing scores. 

674 

domly chosen circuit from one chip to 
the other. The new number of exkrnal 
connections, C, to the two chips is calcu- analyzing the surface-to-volume ratio of 

components of electronic systems [as in 
"Rent's rule" (IS)] conclude that the 

lated (an external connection is a net 
with circuits on both chips, or a circuit 
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connected to one of the pins of the 
original single-chip design), as is the new 
balance score, B, calculated as in deriv- 
ing Eq. 7. The objective function analo- 
gous to Eq. 7 is 

f = C + h B  (8) 

where C is the sum of the number of 
external connections on the two chips 
and B is the balance score. For this 
example, h = 0.01. 

For the annealing schedule we chose 
to start at a high "temperature," 
To = 10, where essentially all proposed 
circuit flips are accepted, then cool ex- 
ponentially, T ,  = ( T I ~ T ~ ) ~ T ~ ,  with the ra- 
tio TliTo = 0.9. At each temperature 
enough flips are attempted that either 
there are ten accepted flips per circuit on 
the average (for this case, 50,000 accept- 
ed flips at each temperature), or the 
number of attempts exceeds 100 times 
the number of circuits before ten flips 
per circuit have been accepted. If the 
desired number of acceptances is not 
achieved at three successive tempera- 

tures, the system is considered "frozen" 
and annealing stops. 

The finite temperature curves in Fig. 1 
show the distribution of pins per chip for 
the configurations sampled at T  = 2.5, 
1 .O, and 0.1. As one would expect from 
the statistical mechanical analog, the dis- 
tr~bution shifts to fewer pins and shar- 
pens as the temperature is decreased. 
The sharpening is one consequence of 
the decrease in the number of configura- 
tions that contribute to the equilibrium 
ensemble at the lower temperature. In 
the language of statistical mechanics, the 
entropy of the system decreases. For 
this sample run in the low-temperature 
limit, the two chips required 353 and 321 
pins, respectively. There are 237 nets 
connecting the two chips (requiring a pin 
on each chip) in addition to the 200 
inputs and outputs of the original chip. 
The final partition in this example has 
the circuits exactly evenly distributed 
between the two partitions. Using a 
more complicated balance score, which 
did not penalize imbalance of less than 

100 circuits, we found partitions result- 
ing in chips with 271 and 183 pins. 

If, instead of slowly cooling, one were 
to start from a random partition and 
accept only flips that reduce the objec- 
tive function (equivalent to setting T  = 0 
in the Metropolis rule), the result is chips 
with approximately 700 pins (several 
such runs led to results with 677 to 
730 pins). Rapid cooling results in a 
System frozen into a metastable state 
far from the optimal configuration. The 
best result obtained after several rapid 
quenches is indicated by the arrow in 
Fig. 1. 

Placement 

Placement is a further refinement of 
the logic partitioning process, in which 
the circuits are given physical positions 
(11, 12, 18, 19). In principle, the two 
stages could be combined, although this 
is not often possible in practice. The 
objectives in placement are to minimize 

Initial position T - 10000 

Fig. 3. Ninety-eight chips on a ceramic module from the IBM 3081. Chips are identified by number (1 to 100, with 20 and 100 absent) and function. 
The dark squares comprise an adder, the three types of squares with ruled lines are chips that control and supply data to the adder, the lightly dot- 
ted chips perform logical arithmetic (bitwise AND. OR, and so on), and the open squares denote general-purpose registers, which serve both 
arithmetic units. The numbers at the left and lower edges of the module image are the vertical and horizontal net-crossing histograms, 
respectively. (a) Original chip placement; (b) a configuration at T = 10,000; (c) T = 1250; (d) a zero-temperature result. 
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signal propagation times or distances 
while satisfying prescribed electrical 
constraints, without creating regions so 
congested that there will not be room 
later to connect the circuits with actual 
wire. 

Physical design of computers includes 
several distinct categories of placement 
problems, depending on the packages 
involved (20). The larger objects to be 
placed include chips that must reside in a 
higher level package, such as a printed 
circuit card or fired ceramic "module" 
(21). These chip carriers must in turn be 
placed on a backplane or "board," 
which is simply a very large printed 
circuit card. The chips seen today con- 
tain from tens to tens of thousands of 
logic circuits, and each chip carrier or 
board will provide from one to ten thou- 
sand interconnections. The partition and 
placement problems decouple poorly in 
this situation, since the choice of which 
chip should carry a given piece of logic 
will be influenced by the position of that 
chip. 

The simplest placement problems 
arise in designing chips with structured 
layout rules. These are called "gate ar- 
ray" or "master slice" chips. In these 
chips, standard logic circuits, such as 
three- or four-input NOR'S, are pre- 
placed in a regular grid arrangement, and 
the designer specifies only the signal 
wiring, which occupies the final, highest, 
layers of the chip. The circuits may all be 
identical, or they may be described in 
terms of a few standard groupings of two 
or more adjacent cells. 

As an example of a placement problem 
with realistic complexity without too 
many complications arising from pack- 
age idiosyncrasies, we consider 98 chips 
packaged on one multilayer ceramic 
module of the IBM 3081 processor (21). 
Each chip can be placed on any of 100 
sites, in a 10 x 10 grid on the top surface 
of the module. Information about the 
connections to be made through the sig- 
nal-carrying planes of the module is con- 
tained in a "netlist," which groups sets 
of pins that see the same signal. 

The state of the system can be briefly 
represented by a list of the 98 chips with 
their x and y coordinates, or a list of the 
contents of each of the 100 legal loca- 
tions. A sufficient set of moves to use for 
annealing is interchanges of the contents 
of two locations. This results in either 
the interchange of two chips or the inter- 
change of a chip and a vacancy. For 
more efficient search at low tempera- 
tures, it is helpful to allow restrictions on 
the distance across which an interchange 
may occur. 

To measure congestion at the same 

time as wire length, we use a convenient 
intermediate analysis of the layout, a 
net-crossing histogram. Its construction 
is summarized in Fig. 2. We divide the 
package surface by a set of natural 
boundaries. In this example, we use the 
boundaries between adjacent rows or 
columns of chip sites. The histogram 
then contains the number of nets cross- 
ing each boundary. Since at least one 
wire must be routed across each bound- 
ary crossed, the sum of the entries in the 
histogram of Fig. 2 is the sum of the 
horizontal extents of the rectangles 
bounding each net, and is a lower bound 
to the horizontal wire length required. 
Constructing a vertical net-crossing his- 
togram and summing its entries gives a 
similar estimate of the vertical wire 
length. 

The peak of the histogram provides a 
lower bound to the amount of wire that 
must be provided in the worst case, since 
each net requires at least one wiring 
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Fig. 4. Specific heat as a function of tempera- 
ture for the design of Fig. 3 ,  a to d .  

Fig. 5. Examples of (a) L-shaped and (b) Z- 
shaped wire rearrangements. 

channel somewhere on the boundary. To 
combine this information into a single 
objective function, we introduce a 
threshold level for each histogram-an 
amount of wire that will nearly exhaust 
the available wire capacity-and then 
sum for all histogram elements that ex- 
ceed the threshold the square of the 
excess over threshold. Adding this quan- 
tity to the estimated length gives the 
objective function that was used. 

Figure 3 shows the stages of a simulat- 
ed annealing run on the 98-chip module. 
Figure 3a shows the chip locations from 
the original design, with vertical and 
horizontal net-crossing histograms indi- 
cated. The different shading patterns dis- 
tinguish the groups of chips that carry 
out different functions. Each such group 
was designed and placed together, usual- 
ly by a single designer. The net-crossing 
histograms show that the center of the 
layout is much more congested than the 
edges, most likely because the chips 
known to have the most critical timing 
constraints were placed in the center of 
the module to allow the greatest number 
of other chips to be close to them. 

Heating the original design until the 
chips diffuse about freely quickly pro- 
duces a random-looking arrangement, 
Fig. 3b. Cooling very slowly until the 
chips move sluggishly and the objective 
function ceases to decrease rapidly with 
change of temperature produced the re- 
sult in Fig. 3c. The net-crossing histo- 
grams have peaks comparable to the 
peak heights in the original placement, 
but are much flatter. At this "freezing 
point," we find that the functionally re- 
lated groups of chips have reorganized 
from the melt, but now are spatially 
separated in an overall arrangement 
quite different from the original place- 
ment. In the final result, Fig. 3d, the 
histogram peaks are about 30 percent 
less than in the original placement. Inte- 
grating them, we find that total wire 
length, estimated in this way, is de- 
creased by about 10 percent. The com- 
puting requirements for this example 
were modest: 250,000 interchanges were 
attempted, requiring 12 minutes of com- 
putation on an IBM 3033. 

Between the temperature at which 
clusters form and freezing starts (Fig. 3c) 
and the final result (Fig. 3d) there are 
many further local rearrangements. The 
functional groups have remained in the 
same regions, but their shapes and rela- 
tive alignments continue to change 
throughout the low-temperature part of 
the annealing process. This illustrates 
that the introduction of temperature to 
the optimization process permits a con- 
trolled, adaptive division of the problem 
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through the evolution of natural clusters 
a t  the freezing temperature. Early pre- 
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scription of natural clusters is also a 
central, feature of several sophisticated 
placement programs used in master slice 
chip placement (22, 23). 

A quantity corresponding to the ther- 
modynamic specific heat is defined for 
this problem by taking the derivative 
with respect to  temperature of the aver- 
age value of the objective function ob- 
served at  a given temperature. This is 
plottetl in Fig. 4. Just as  a maximum in 
the specific heat of a fluid indicates the 
onset of freezing or the formation of 
clusters, we find specific heat maxima at  
two temperatures, each indicating a dif- 
ferent type of ordering in the problem. 
The higher temperature peak corre- 
sponds to the aggregation of clusters of 
functionally related objects, driven apart 
by the congestion term in the scoring. 
The lower temperature peak indicates 
the further decrease in wire length ob- 
tained by local rearrangements. This sort 
of measurement can be useful in practice 
as a means of determining the tempera- 
ture ranges in which the important rear- 
rangements in the design are occurring, 
where slower cooling with be helpful. 

Wiring 

After placement, specific legal rout- 
i n g ~  rnust be found for the wires needed 
to connect the circuits. The techniques 
typically applied to generate such rout- 
i n g ~  are sequential in nature, treating one 
wire at  a time with incomplete informa- 
tion about the positions and effects of the 
other wires (1 1, 24). Annealing is inher- 
ently free of this sequence dependence. 
In this section we describe a simulated 
annealing approach to wiring, using the 
ceramic module of the last section as an 
example. 

Nets with many pins must first be 
broken into connections-pairs of pins 
joined by a single continuous wire. This 
"ordering" of each net is highly depen- 
dent on the nature of the circuits being 
connected and the package technology. 
Orderings permitting more than two pins 
to  be connected are sometimes allowed, 
but will not be discussed here. 

The usual procedure, given an order- 
ing, is first to  construct a coarse-scale 
routing for each connection from which 
the ultimate detailed wiring can be com- 
pleted. Package technologies and struc- 
turecl image chips have prearranged ar- 
eas of fixed capacity for the wires. For  
the rough routing to be successful, it 
must not call for wire densities that ex- 
ceed this capacity. 

Fig. 6 (left). Wire density in the 98-chip mod 
perimeter routes. Chips are in the original p 
simulated annealing of the wire routing, using 

lule with the connections randomly assigned to 
lacement. Fig. 7 (right). Wire density after 
Z-shaped moves. 

We can model the rough routing prob- 
lem (and even simple cases of detailed 
embedding) by lumping all actual pin 
positions into a regular grid of points, 
which are treated as  the sources and 
sinks of all connections. The wires are 
then to be routed along the links that 
connect adjacent grid points. 

The objectives in global routing are to  
minimize wire length and,  often, the 
number of bends in wires, while spread- 
ing the wire as evenly as  possible to 
simplify exact embedding and later revi- 
sion. Wires are to be routed around 
regions in which wire demand exceeds 
capacity if possible, so that they will not 
"overflow," requiring drastic rearrange- 
ments of the other wires during exact 
embedding. Wire bends are costly in 
packages that confine the north-south 
and east-west wires to different layers, 
since each bend requires a connection 
between two layers. Two classes of 
moves that maintain the minimum wire 
length are shown in Fig. 5. In the L- 
shaped move of Fig. 5a, only the essen- 
tial bends are permitted, while the Z- 
shaped move of Fig. 5b introduces one 
extra bend. We will explore the optimi- 
zation possible with these two moves. 

For a simple objective function that 
will reward the most balanced arrange- 
ment of wire, we calculate the square of 
the number of wires on each link of the 
network, sum the squares for all links, 
and term the result F. If there are N L  
links and Nw wires, a global routing 
program that deals with a high density of 
wires will attempt to route precisely the 
average number of wires, NwlNL, along 
each link. In this limit F is bounded 
below by NW~INL,. One can use the same 
objective function for a low-density (or 
high-resolution) limit appropriate for de- 

tailed wiring. In that case, all the links 
have either one or  no wires, and links 
with two or  more wires are illegal. For  
this limit the best possible value of F will 
be NwlNL. 

For the L-shaped moves, F has a 
relatively simple form. Let  E;, = + 1 
along the links that connection i has for 
one orientation, - 1 for the other orienta- 
tion, and 0 otherwise. Let  a;, be l if the 
ith connection can run through the vth 
link in either of its two positions, and 0 
otherwise. Note that ai, is just eiV2. Then 
if kl  = k 1 indicates which route the ith 
connection has taken, we obtain for the 
number of wires along the vth link, 

where n,(O) is the contribution from 
straight wires, which cannot move with- 
out increasing their length, or blockages. 

Summing the nu2 gives 

F = C J ~ ~ ~ F ~  -+ C h i F i  + constants (10) 
i,i I 

which has the form of the Hamiltonian 
for a random magnetic alloy or spin 
glass, like that discussed earlier. The 
"random field," hi, felt by each movable 
connection reflects the difference, on the 
average, between the congestion associ- 
ated with the two possible paths: 

The interaction between two wires is 
proportional to the number of links on 
which the two nets can overlap, its sign 
depending on their orientation conven- 
tions: 

(12) 
V 



Both Ji j  and hi vanish, on average, so  it is 
the fluctuations in the terms that make 
up F which will control the nature of the 
low-energy states. This is also true in 
spin glasses. We have not tried to exhibit 
a functional form for the objective func- 
tion with Z-moves allowed, but simply 
calculate it by first constructing the actu- 
al amounts of wire found along each link. 

T o  assess the value of annealing in 
wiring this model, we studied an ensem- 
ble of randomly situated connections, 
under various statistical assumptions. 
Here we consider routing wires for the 
98 chips on a module considered earlier. 
First, we show in Fig. 6 the arrangement 

of wire that results from assigning each 
wire to an L-shaped path, choosing ori- 
entations at random. The thickness of 
the links is proportional to the number of 
wires on each link. The congested area 
that gave rise to the peaks in the histo- 
grams discussed above is seen in the 
wiring just below and to the right of the 
center of the module. The maximum 
numbers of wires along a single link in 
Fig. 6 are 173 (x direction) and 143 (y 
direction), so the design is also aniso- 
tropic. Various ways of rearranging the 
wiring paths were studied. Monte Carlo 
annealing with Z-moves gave the best 
solution, shown in Fig. 7. In this exam- 

Fig. 8. Histogram of the maxi- 
mum wire densities within a 
given column of x-links, for 

Channel position 

the various methods of rout- 
ing. 

Fig. 9. Results at four temperatures for a clustered 400-city traveling salesman problem. The 
points are uniformly distributed in nine regions. (a) T = 1.2, a = 2.0567; (b) T = 0.8, 
a = 1.515; (c) T = 0.4, a = 1.055; (d) T = 0.0, a = 0.7839. 

ple, the largest numbers of wires on a 
single link are 105 (x) and 96 (y). 

We compare the various methods of 
improving the wire arrangement by plot- 
ting (Fig. 8) the highest wire density 
found in each column of x-links for each 
of the methods. The unevenness of the 
density profiles was already seen when 
we considered net-crossing histograms 
as input information to direct placement. 
The lines shown represent random as- 
signment of wires with L-moves; align- 
ing wires in the direction of least average 
congestion-that is, along h,-followed 
by cooling for one pass at  zero T; simu- 
lated annealing with L-moves only; and 
annealing with Z-moves. Finally, the 
light dashed line shows the optimum 
result, in which the wires are distributed 
with all links carrying as close to the 
average weight as  possible. The opti- 
mum cannot be attained in this example 
without stretching wires beyond their 
minimum length, because the connec- 
tions are too unevenly arranged. Any 
method of optimization gives a signifi- 
cant improvement over the estimate ob- 
tained by assigning wire routings at  ran- 
dom. All reduce the peak wire density on 
a link by more than 45 percent. Simulat- 
ed annealing with Z-moves improved the 
random routing by 57 percent, averaging 
results for both x and y links. 

Traveling Salesmen 

Quantitative analysis of the simulated 
annealing algorithm or  comparison be- 
tween it and other heuristics requires 
problems simpler than physical design of 
computers. There is a n  extensive litera- 
ture on algorithms for the traveling sales- 
man problem (3, 4), so it provides a 
natural context for this discussion. 

If the cost of travel between two cities 
is proportional to the distance between 
them, then each instance of a traveling 
salesman problem is simply a list of the 
positions of N cities. For  example, an 
arrangement of N points positioned at  
random in a square generates one in- 
stance. The distance can be calculated in 
either the Euclidean metric o r  a "Man- 
hattan" metric, in which the distance 
between two points is the sum of their 
separations along the two coordinate 
axes. The latter is appropriate for physi- 
cal design applications, and easier to  
compute, so we will adopt it. 

We let the side of the square have 
length N"~, SO that the average distance 
between each city and its nearest neigh- 
bor is independent of N. It  can be shown 
that this choice of length units leaves the 
optimal tour length per step independent 
of N, when one averages over many 



instances, keeping N fixed (25). Call this 
average optimal step length a. To bound 
a firom above, a numerical experiment 
was performed with the following 
"greedy" heuristic algorithm. From 
each city, go to the nearest city not 
already on the tour. From the Nth city, 
return directly to the first. In the worst 
case, the ratio of the length of such a 
greedy tour to the optimal tour is propor- 
tional to ln(N) (26), but on average, we 
find that its step length is about 1.12. The 
variance of the greedy step length de- 
creases as N-"~,  SO the situation envi- 
sioned in the worst case analysis is unob- 
servably rare for large N. 

To construct a simulated annealing 
algorithm, we need a means of represent- 
ing the tour and a means of generating 
random rearrangements of the tour. 
Each tour can be described by a permut- 
ed list of the numbers 1 to N, which 
represents the cities. A powerful and 
general set of moves was introduced by 
Lin and Kernighan (27, 28). Each move 
consists of reversing the direction in 
which a section of the tour is traversed. 
More complicated moves have been 
used to enhance the searching effective- 
ness of iterative improvement. We find 
with the adaptive divide-and-conquer ef- 
fect of annealing at intermediate tem- 
peratures that the subsequence reversal 
moves are sufficient (29). 

An annealing schedule was deter- - 
mined empirically. The temperature at 
which segments flow about freely will be 
of order N"', since that is the average 
bond length when the tour is highly ran- 
dom. Temperatures less than 1 should be 
cold. We were able to anneal into locally 
optimal solutions with a 5 0.95 for N up 
to 6000 sites. The largest traveling sales- 
man problem in the plane for which a 
proved exact solution has been obtained 
and published (to our knowledge) has 
318 points (30). 

Real cities are not uniformly distribut- 
ed, but are clumped, with dense and 
sparse regions. To introduce this feature 
into an ensemble of traveling salesman 
problems, albeit in an exaggerated form, 
we confine the randomly distributed cit- 
ies to nine distinct regions with empty 
gaps between them. The temperature 
gives the simulated annealing method a 
means of separating out the problem of 
the coarse structure of the tour from the 
local details. At temperatures, such as 
T = 1.2 (Fig. 9a), where the small-scale 
structure of the paths is completely dis- 
ordered, the longer steps across the gaps 
are already becoming infrequent and 
steps joining regions more than one gap 
are eliminated. The configurations stud- 
ied below T = 0.8 (for instance, Fig. 9b) 
had the minimal number of long steps, 

but the detailed arrangement of the long 
steps continued to change down to 
T = 0.4 (Fig. 9c). Below T = 0.4, no 
further changes in the arrangement of the 
long steps were seen, but the small-scale 
structure within each region continued to 
evolve, with the result shown in Fig. 9d. 

Summary and Conclusions 

Implementing the appropriate Metrop- 
olis algorithm to simulate annealing of a 
combinatorial optimization problem is 
straightforward, and easily extended to 
new problems. Four ingredients are 
needed: a concise description of a con- 
figuration of the system; a random gener- 
ator of "moves" or rearrangements of 
the elements in a configuration; a quanti- 
tative objective function containing the 
trade-offs that have to be made; and an 
annealing schedule of the temperatures 
and length of times for which the system 
is to be evolved. The annealing schedule 
may be developed by trial and error for a 
given problem, or may consist of just 
warming the system until it is obviously 
melted, then cooling in slow stages until 
diffusion of the components ceases. In- 
venting the most effective sets of moves 
and deciding which factors to incorpo- 
rate into the objective function require 
insight into the problem being solved and 
may not be obvious. However, existing 
methods of iterative improvement can 
provide natural elements on which to 
base a simulated annealing algorithm. 

The connection with statistical me- 
chanics offers some novel perspectives 
on familiar optimization problems. Mean 
field theory for the ordered state at low 
temperatures may be of use in estimating 
the average results to be obtained by 
optimization. The comparison with mod- 
els of disordered interacting systems 
gives insight into the ease or difficulty of 
finding heuristic solutions of the associ- 
ated optimization problems, and pro- 
vides a classification more discriminat- 
ing than the blanket "worst-case" as- 
signment of many optimization problems 
to the NP-complete category. It appears 
that for the large optimization problems 
that arise in current engineering practice 
a "most probable" or average behavior 
analysis will be more useful in assessing 
the value of a heuristic than the tradition- 
al worst-case arguments. For such analy- 
sis to be useful and accurate, better 
knowledge of the appropriate ensembles 
is required. 

Freezing, at the temperatures where 
large clusters form, sets a limit on the 
energies reachable by a rapidly cooled 
spin glass. Further energy lowering is 
possible only by slow annealing. We 

expect similar freezing effects to limit the 
effectiveness of the common device of 
employing iterative improvement repeat- 
edly from different random starting con- 
figurations. 

Simulated annealing extends two of 
the most widely used heuristic tech- 
niques. The temperature distinguishes 
classes of rearrangements, so that rear- 
rangements causing large changes in the 
objective function occur at high tempera- 
tures, while the small changes are de- 
ferred until low temperatures. This is an 
adaptive form of the divide-and-conquer 
approach. Like most iterative improve- 
ment schemes, the Metropolis algorithm 
proceeds in small steps from one config- 
uration to the next, but the temperature 
keeps the algorithm from getting stuck 
by permitting uphill moves. Our numeri- 
cal studies suggest that results of good 
quality are obtained with annealing 
schedules in which the amount of com- 
putational effort scales as N o r  as a small 
power of N. The slow increase of effort 
with increasing N and the generality of 
the method give promise that simulated 
annealing will be a very widely applica- 
ble heuristic optimization technique. 

Dunham (5) has described iterative 
improvement as the natural framework 
for heuristic design, calling it "design by 
natural selection." [See Lin (6) for a 
fuller discussion.] In simulated anneal- 
ing, we appear to have found a richer 
framework for the construction of heu- 
ristic algorithms, since the extra control 
provided by introducing a temperature 
allows us to separate out problems on 
different scales. 

Simulation of the process of arriving at 
an optimal design by annealing under 
control of a schedule is an example of an 
evolutionary process modeled accurate- 
ly by purely stochastic means. In fact, it 
may be a better model of selection pro- 
cesses in nature than is iterative im- 
provement. Also, it provides an intrigu- 
ing instance of "artificial intelligence," 
in which the comvuter has arrived al- 
most uninstructed at a solution that 
might have been thought to require the 
intervention of human intelligence. 
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Bone Cell Differentiation 
and Growth Factors 

Marshall R. Urist, Robert J. DeLange, G. A. M. Finerman 

Bone differs from other tissue not only more than a century and is measured in 
in physiochemical structure but also in reactions of periosteum and endosteum 
its extraordinary capacity for growth, to injury, diet, vitamins, and hormones. 
continuous internal remodeling, and re- Bone-derived growth factors (BDGF) 
generation throughout postfetal life, stimulate osteoprogenitor cells to prolif- 
even in long-lived higher vertebrates. erate in serum-free tissue culture media 
How much of this capacity can be ac- (3,4). The mechanisms of action of BMP 

Summary. Bone morphogenetic protein and bone-derived growth factors are 
biochemical tools for research on induced cell differentiation and local mechanisms 
controlling cell proliferation. Bone morphogenetic protein irreversibly induces differen- 
tiation of perivascular mesenchymal-type cells into osteoprogenitor cells. Bone- 
derived growth factors are secreted by and for osteoprogenitor cells and stimulate 
DNA synthesis. Bone generation and regeneration are attributable to the co-efficiency 
of bone morphogenetic protein and bone-derived growth factors. 

counted for by proliferation of prediffer- 
entiated osteoprogenitor cells and how 
much can be attributed to induced differ- 
entiation of mesenchymal-type cells 
have been challenging questions for a 
long time. A basic assumption is that 
regeneration occurs by a combination of 
the two processes. The process of in- 
duced cell differentiation has been ob- 
served from measurements of the quanti- 
ties of bone formed in response to im- 
plants of either bone matrix or purified 
bone morphogenetic protein (BMP) in 
extraskeletal (I) and intraskeletal (2) 
sites. The osteoprogenitor cell prolifera- 
tion process has been well known for 

and BDGF are primarily local, but sec- 
ondary systemic immunologic reactions 
could have either permissive or depres- 
sive effects. 

Recent progress in the field, surveyed 
in this article, suggest that BMP and 
BDGF are coefficient; BMP initiates the 
covert stage and BDGF stimulates the 
overt stage of bone development. The 
effects of BMP are observed on morpho- 
logically unspecialized mesenchymal- 
type cells either in systems in vitro or in 
vivo. The action of BDGF is demonstra- 
ble only in tissue culture, ostensibly on 
morphologically differentiated bone 
cells. 
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Induced Bone Morphogenesis 

The theory of cell differentiation by 
induction originates in observations on 
transplants of embryonic tissues and is a 
main tenet of modern developmental bi- 
ology. Development begins with a mor- 
phogenetic phase and ends with a cyto- 
differentiation phase ( 5 ) .  The morpho- 
genetic phase consists of cell disaggre- 
gation, migration, reaggregation, and 
proliferation. Through interaction of in- 
tra- and extracellular influences, cytodif- 
ferentiation follows and a mature func- 
tional specialized tissue emerges. As cy- 
todifferentiation occurs, pattern forma- 
tion is established by the positional 
values of cells in a three-dimensional 
extracellular coordinate system (6). Pat- 
tern formation is a difficult concept to 
explain because it is heritable, encom- 
passes morphogenesis, and is the culmi- 
nation of manifold physiochemical pro- 
cesses. Present evidence indicates that 
chondro-osteogenetic gene activation is 
induced at the onset of the morphogenet- 
ic phase of bone development and is 
regulated by a combination of extra- and 
intracellular factors. 

Previous studies on extracellular ma- 
trix factors consisted chiefly of biochem- 
ical interpretations of descriptive mor- 
phology. The emphasis has been on 
uncertainties about when the morpholog- 
ically predifferentiated (protodifferen- 
tiated or covert) stage of development 
begins, if and when an inductive agent is 
transferred from extracellular matrix to 
responding cell surfaces, and how alter- 
ations in the genome occur. Since alter- 
ations ultimately occur at the level of 
DNA, clear-cut distinctions between ex- 
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