
29 April 1983, Volume 220, Number 4596

Design Automation for
Integrated Circuits

Sydney B. Newell, Aart J . de Geus, Ronald A. Rohrer

The complexity of integrated circuits design process unless help is forthcom-
is constantly increasing and the physical ing (1-5). For this help, designers are
size of their individual components de- turning more and more to computers.
creasing; for commercially available in- Computer-aided design (CAD) has
tegrated circuits the complexity doubles been in use almost since the inception of
every year (1-3). Like any rapidly ex- integrated circuits (3). In CAD, comput-

Summary. With the ever-increasing complexity of integrated circuits, manual
design methods have become intolerably slow and error-prone. The use of computers
to automate some or all of the design process is necessary to minimize both design
time and error incidence. In this article are discussed the design and fabrication of
integrated circuits, selected techniques of design automation, and the problems
associated with such automation.

panding field, microelectronics is experi-
encing "growing pains" because some of
its areas are not keeping pace with the
rest of the field.

In the progression from idea to inte-
grated circuit, the first phase, design,
encompasses all tasks up to manufac-
turing. The second phase, fabrication,
deals with the physical creation .of the
integrated circuit. Of the two phases,
design is by far the more expensive and
time-consuming. For example, to design
a microprocessor chip containing 60,000
to 70,000 transistors can require dozens
of man-years and millions of dollars.
But, after the initial setup of the manu-
facturing process, fabrication of such a
chip can take just weeks and cost thou-
sands of dollars. Progress in integrated
circuit development may be slowed or
halted by the time- and cost-intensive

ers analyze circuit and system behavior
and designers use the results for guid-
ance in correcting or enhancing their
designs. Thus the role of the computer in
CAD is one of an assistant to the design-
er, who carries out the actual design
tasks by making decisions based on the
CAD results.

In design automation, not only the
analytical but also many of the synthetic
design tasks are performed by comput-
ers. Computers carry out a given design
task by performing a series of iterations
and are guided by the analytical results
of each iteration to improve the design
until the desired specifications are met.
Thus in design automation using a form
of artificial intelligence, the computer
decides what actions to take and carries
out the design tasks with little or no
human intervention.

Design automation is in a relatively
S. B. Newell is Manager of Technical Documenta- primitive state CAD, and

tlon and A J. de Geus 1s Program Manager of represents one of the last frontiers in
S~mulat~on and Test Automatron at the General
Electrlc M~croelectron~cs Center, Research Tnangle cutting design time, cost, and errors.
Park, North Carolma 27709. R A Rohrer IS D~rec- several reviews (3, 6-81 of the status of tor of Electron~c Marketing at the CALMA Compa-
ny, Santa Clara, Cahfornla 95050. design automation are directed to spe-

cialists in the field; this article will pro-
vide an overview of design automation
for scientists and technologists who are
not involved in integrated circuit design.

A brief introduction to integrated cir-
cuits and their fabrication may be helpful
in demonstrating the necessity for
streamlining the design process. For sim-
plicity, throughout this article we con-
fine our discussions to digital circuits.

Integrated Circuits and

Their Fabrication

An integrated circuit is a circuit con-
tained on (or in) a continuous piece of
solid material (usually silicon) called a
die or chip. Components and wiring are
fabricated simultaneously onto an inte-
grated circuit. (In contrast, discrete
steps are required for placing compo-
nents and wiring onto a printed circuit
board.) The circuit itself is usually speci-
fied by a logic diagram, which is an
interconnection of logic gates.

Digital (binary) logic is composed of
logic circuits. A logic circuit is realized
with logic gates, each of which has in-
puts and outputs and performs a logical
operation. In such an operation a set of
variables having the complementary val-
ues 0 and 1 are treated as "false" and
"true," respectively; translated to elec-
tronics, a 0 is usually implemented with
a low voltage (around O), and a 1 is
usually implemented with a relatively
high voltage (around 5 volts). Addition,
subtraction, storing, counting, control-
ling, and many other functions are
achieved by specific interconnections
among logic gates.

Figure 1 gives names, symbols, and
truth tables for some simple logic gates
and their corresponding operations. A
truth table shows the inputs on the left of
a vertical line and the outputs on the
right. Thus the truth table for the AND
gate shows that the output, Y, is 1 only if
both inputs A and B are 1; the output is 0
for any other combination of inputs.

The binary logic of digital circuits may
be implemented by transistors, which act
as switches. By connecting transistors in
different ways, any desired electronic
circuit function can be realized. Integrat-
ed circuits, commonly 0.25 to 1 square

29 APRIL 1983 465

centimeter in area and about 1 millimeter
thick, owe their compactness to this ba-
sic circuit element. Today, an integrated
circuit may contain from ten to hundreds
of thousands of transistors, each measur-
ing about 150 square micrometers.

The complexity of an integrated circuit
is described by the number of transistors
it contains. In small-scale integration
(SSI) a chip contains up to 100 transis-
tors. Subsequent levels of complexity
include medium-scale integration (MSI),
with up to 1000 transistors; large-scale
integration (LSI), with up to 10,000; and
very large scale integration (VLSI), with
more than 10,000 transistors. An inte-
grated circuit is three-dimensional and
can consist of up to 12 layers, each layer
being composed of a semiconductor, a
conductor, or an insulator.

The semiconductor is usually silicon
to which small, controlled amounts of an
impurity (called a dopant) have been
introduced to provide carriers for cur-
rent. Semiconductors are of two types.
In an n-doped semiconductor, a group V
element (for example, phosphorus) is the
dopant and provides electrons as current
carriers. A p-doped semiconductor con-
tains a group I11 element (for example,
boron), which provides positive, elec-
tron-deficient regions called holes as cur-
rent carriers. Larger amounts of doping
produce higher conductivities; the sub-
strate, or supporting material for the
circuit, is usually lightly doped with ei-
ther type of semiconductor. Electrodes
of transistors are made of semiconductor
material, but usually contain more dop-
ant than the substrate.

The conductor may be a metal (for
example, aluminum) or polysilicon, a
polycrystalline form of silicon that has
been heavily doped. Strips of conductors
form electrical connections within and
between circuit elements. The insulator
is usually silicon dioxide and is used to
separate conducting regions where no
connections are desired.

Integrated circuits contain several lay-
ers of various combinations of differently
doped material, interconnections, and
silicon dioxide. In the fabrication of inte-
grated circuits, the layers are added one
at a time. A template called a mask
determines the pattern for each layer; 12
masks would be required to make an
integrated circuit with 12 layers. Fabri-
cation takes place by various multistep
combinations of oxidation, mask protec-
tion, etching, diffusion or ion implanta-
tion, and vapor deposition. The whole
cycle can take 4 weeks to several months
on a commercial production line.

At various stages the chips are
checked for possible defects, and thor-

ough functional testing is done after their
completion. Because of the integral na-
ture of integrated circuits, a defective
chip cannot be repaired; it must be dis-
carded. Defects have two origins: manu-
facturing and design.

Manufacturing defects are random and
will affect a certain percentage of chips
on a statistical basis. The yield, the num-
ber of good chips divided by the total,
decreases as the active chip area (the
area occupied by components and wir-
ing) increases. For a chip 0.2 inch on a
side, doubling the active chip area
causes a nearly sixfold decrease in yield
(9).

A design defect is traceable to one or
more of the masks and will, of course,
affect all chips in that fabrication series.
Some design defects are detectable early
in the fabrication process; if a design
defect is found, the process can be halted
and the defect corrected. In some cases a
second iteration of design and fabrica-
tion is needed to correct design defects
in the first-pass chip.

Two economic reasons dictate that
redesign and refabrication be held to a
minimum. First, design and production
of an integrated circuit are extremely
expensive. Second, delay in getting the
chip to the marketplace results in lost
sales and loss of a potential share of the
market. To minimize the necessity for
redesign and refabrication, the design
process must generate a valid set of
masks.

1 0
NOT gate or inverter

AND gate 1 1

OR gate i : I ;

NAND gate 1 1 0

NOR gate

Fig. 1. Names, symbols, and truth tables for
some simple logic gates and their correspond-
ing logical operations.

General Design Procedure

The mask set that begins the fabrica-
tion process is the goal of the design
process. To design an integrated circuit
means to transform a functional specifi-
cation into masks that are ready for
fabrication.

Integrated circuit design can be parti-
tioned into two major tasks: logic specifi-
cation, in which the goal is a logic dia-
gram that accurately represents the de-
sired electronic function, and physical
specification, in which the goal is an
exact description of the physical loca-
tions of all circuit elements and their
interconnections on the chip. The design
tasks are carried out by continuously
iterating between synthesis, the creative
act of constructing a given part of a
design, and verification, determining
whether or not the design will perform
according to specifications. That is, a
designer creates part of a design, verifies
it, uses the results of the verification to
modify or correct (recreate) the design,
reverifies it, and so on until, much later,
the entire design is completely synthe-
sized and verified.

Often a hierarchical approach is taken
in which a total design is decomposed
into several simpler, functional modules,
each of which may be broken into sub-
modules, and so on until the submodules
are simple enough to implement. (Hier-
archy has the effect of reducing a large,
unsolvable problem to several smaller,
solvable problems.) Figure 2 illustrates
hierarchical levels of an integrated cir-
cuit. At the highest level, the circuit
itself can be partitioned into functional
modules. At lower levels, each function-
al module can be decomposed into logic
gates which, in turn, are represented by
interconnections of transistors. At the
lowest level, the transistors and their
interconnections are described by physi-
cal structures.

At each level, each submodule and its
interconnections with other submodules
must be specified. Both synthesis and
verification are performed at all levels,
and verification is always needed when
going from one level to another in either
direction in the hierarchy.

In the era of SSI, a circuit could be
verified by physically constructing it
from discrete circuit elements on a cir-
cuit board and submitting it to exhaus-
tive electronic testing. A major problem
was that the discrete circuit elements
often introduced extraneous electrical
effects not reflective of the integrated
circuit. With increased levels of integra-
tion the circuit board approach soon
became impractical, and it is in this

SCIENCE, VOL. 220

verification category that much of the
existing CAD tools have been created. In
particular, simulation, in which the oper-
ation and performance of a circuit or
system is predicted by a computer pro-
gram, is now widely used by designers.

Figure 3 presents an overview of the
design process, fabrication, and testing.
Steps (a) through (h) constitute the tasks
necessary for logic specification; nor-
mally many iterations are needed before
a successful first-pass specification is
obtained. At (a) a functional conception
of the desired system is generated (syn-
thesis). As a first approach to verifica-
tion, a functional or system-level simula-
tor (h) can check for satisfactory com-
munication among functional blocks in a
total system. Next, at (c) each block is
expanded into smaller modules that go
through a complex cycle (r) of synthesis
and verification and can be added to a
library (d) for reuse in future designs. A
part of the designer's input is a net list,
which specifies the modules and how
they are connected. These modules can
be retrieved from the library (4 or newly
constructed if they do not already exist.
At (e) a logic simulator can check the
design for correct function (verification);
if the verification fails, then the designer
modifies the specification [back to (c) or
(a)]. Next, a timing simulator (t) can
determine whether the performance
speed requirements of the circuit will be
satisfied and can detect the critical paths
(the paths whose speed limits the per-
formance speed of the chip). Timing sim-
ulators also indicate whether expected
delays of the circuit elements will cause
undesirable circuit behavior, such as rac-
ing (an error that occurs when a device
receives conflicting inputs at nearly the
same time). The design may again be
modified until acceptable results are ob-
tained.

An activity usually performed in paral-
lel with the design is the creation of a set
of test vectors (g) that will be used to test
the chip after fabrication. Test vectors
are sets of values that, when applied to
the inputs of an integrated circuit, gener-
ate outputs whose values are known for
a properly working circuit. An ideal set
of test vectors thoroughly exercises all
parts of the chip and detects all faulty
circuit elements. At (e) an initial set of
test vectors was created to be used for
the logic simulation; usually the results
of the simulation indicate changes to be
made in the design and in the test vec-
tors. The modified set of test vectors is
used next in the timing simulation, and
perhaps is modified again. In practice, a
set of test vectors covering all possible
faults may require too much testing time;

29 APRIL 1983

a compromise subset of test vectors is
often selected, and a fault simulator (h)
can determine whether the subset is
good enough to test the finished device.
Often, further design modifications may
be needed if fault simulation indicates
that some possible key faults cannot be
detected because they are buried too
deeply in the design.

At (13 physical specification begins
with layout, which determines the exact
locations of the transistors on the chip
and specifies a wiring pattern that will
interconnect them. This phase of the
design involves translating every ele-
ment and its interconnections into a
physical description and assigning it a
location. [The average number of tran-
sistors that can be manually laid out per

person per day lies somewhere between
3 and 40, depending on the regularity of
the configuration (lo).] Next, more veri-
fications (j) must be performed to make
sure that design rules (rules pertaining to
width, length, and spacing imposed on
the geometrical features of an integrated
circuit by the process technology) and
electrical rules (for example, each ele-
ment must be connected and there must
be no shorts between power and ground)
are obeyed. Software tools currently
available for these tasks are the design
rule checker (DRC) and the electrical
rule checker (ERC). If the design vio-
lates any rules the layout must be modi-
fied until all rules are obeyed.

When a satisfactory layout has been
obtained, yet another verification is

Fig. 2. Hierarchical decompo-
sition of an integrated circuit
into functional, logic, transis-
tor, and physical levels.

F u n c t

C h l p

f u n c

l o n a l I

m a d e

t i o n a l

up o f

b l o c k s

L o g i c l e v e l

F u n c t i o n a l b l o c k s

m a d e u p o f l o g i c

g a t e s

C i r c u i t l e v e l

L o g i c g a t e s m a d e u p

o f t r a n s i s t o r s

L a y o u t l e v e l

T rans is to rs c o n s t r u c t e d

b y p h y s l c a l l a y e r s o f

m a t e r i a l (top v iew)

needed. Up to this point, timing simula-
tions had been based on approximate
delays between circuit elements, be-
cause their exact locations were not yet
known. Exact delays depend on the
length and composition of the conduc-
tive paths: a signal takes longer to attain
its final value through a long polysilicon
path than through a short metal one.
Now that all locations and path lengths
are known exactly, this information is
used to extract exact delays (k), which
are fed back into the timing simulator (1).
If any timing errors or unacceptable de-
lays are found, the layout or the design
must again be modified and the DRC and
ERC again used.

When a satisfactory layout is ob-
tained, a program decomposes all geo-
metrical data into rectangles and gener-
ates a pattern generator tape (m). The
pattern generator tape contains all topo-
logical information about the layout and
is used in a mask-making machine to
generate the mask set for fabrication. In
the test vector loop a program generates
a test vector tape (n) that will program
the tester.

Finally, the chip is fabricated (o), test-
ed (p) , and packaged (q). Figure 3 pre-
sents a simplified view of the design
process; in actuality many iterations are
needed between synthesis and verifica-
tion.

On the right of the flow chart the
characterization of the small modules (r)
follows steps similar to those in the left
part of the flow chart. First the module is
represented by a logic diagram and veri-
fied with timing simulation. The next
step in the hierarchy is the circuit dia-
gram, followed by circuit simulation (not
used in the left part of the flow chart). A
circuit simulator fine-tunes the design of
the module by simulating the behavior of
the individual transistors and their inter-
connections. Next, custom layout man-
ually defines all physical devices. After
design rule checking, circuit extraction,
and resimulation the module has been
completely characterized and is ready to
be used in the circuit or added to the
library.

Total design automation, in which the
desired circuit behavior is specified at
one end and a set of masks comes out the
other is, as yet, seldom realized. Howev-
er, computer programs that automate
portions of the design process have been
and are being written. Because the lay-
out phase is currently the most time-
consuming and error-prone stage of inte-
grated circuit design and because rela-
tively simple decision-making algorithms
are needed here, the first efforts in de-
sign automation have focused on this

phase. Existing design automation pro-
grams use various structured approaches
to the method of design (called the "de-
sign methodology").

In a "full-custom" chip, transistors
are manually placed one at a time, re-
quiring the full fabrication process for
each design (other methodologies to be
discussed allow some degree of prefabri-
cation). Although hierarchical design can
reduce time and cost to some extent, the
full-custom chip has the longest turn-
around time and highest cost of any
methodology. Still, in some applications
this is the methodology of choice. Man-
ual placement by human beings is the
best (albeit the slowest) way to achieve
the most efficient packing of transistors
and, therefore, the smallest size (smaller
size results in lower manufacturing cost
and higher yields). If a very large number
of identical chips are to be fabricated,
the design time and cost of full-custom
design can be amortized over all chips
sold. Also, applications in which high
performance (speed and power) is criti-
cal may require the full-custom design
process.

Established Design

Automation Methodologies

At present, only two methodologies
enjoy widespread use: standard cells and
gate arrays. In the standard cell (or poly-
cell) approach the designer, instead of
constructing a circuit "from scratch"
out of transistors, uses a library of cells
that represent predefined logic func-
tions, usually at the logic gate level.
These cells have been constructed from
individual transistors, and the cell di-
mensions, performance, and electrical
characteristics have been optimized and
recorded.

To use the standard cell approach, the
designer first constructs the design by
using logic functions represented in the
standard cell library. The next step is to
give the computer information telling
what logic functions are in the design and
how they are connected. Design descrip-
tions are entered into a computer system
by one of two methods:

1) Graphics schematic entry. The de-
signer "draws" the schematic onto a
monitor with a set of graphic symbols
that represent logic functions. A comput-
er program translates the graphic sym-
bols into a machine-usable description of
the circuit. Of the two methods, this one
is easier for the designer to use but
requires more hardware and software.

2) Hardware description language.
The designer translates the design into a

hardware description language, generat-
ing a written description similar to a
computer program. This description is in
turn translated into a machine-usable cir-
cuit description (as in graphics schematic
entry). The method requires less hard-
ware and software than graphics sche-
matic entry, but the designer must learn
a specialized language. The possibility of
creating hard-to-detect discrepancies be-
tween the schematic and its description
is a major drawback of the method. Also,
the danger of introducing errors during
design revision has doubled because
changes in the design must be made both
to the schematic and to the language
description.

The circuit is then verified by simula-
tion, using the known, predefined char-
acteristics of the cells in the cell library.
The next task is placement, in which
cells are laid out in rows with spaces
reserved between the rows for wiring
channels. Connection points for input
and output, called bonding pads, are
placed around the periphery of the chip.
Cells having many connections in com-
mon are placed close to each other, and
those that connect to bonding pads are
placed near the edge of the chip. In some
design automation systems, placement is
done automatically by the software; in
others, the designer specifies the place-
ment; in still others, software placement
is done initially with designer interven-
tion if difficulties or special cases arise.

Most successful placement algorithms
are heuristic and use directed forces,
vectors representing the direction and
distance between interconnected blocks.
In most placement algorithms the criteria
for success are minimization and uni-
formization of the crossing count (the
number of wires crossing each terminal
position in a cell row) and minimization
of the combined wire length of all con-
nections (1 1).

Two major groups of placement algo-
rithms are constructive placement and
iterative improvement of placement. The
constructive placement algorithms in-
clude the epitaxial growth algorithm, in
which manual placement of a few mod-
ules is used to start the process. The
algorithm finds the next unplaced mod-
ule with the maximum number of con-
nections to the placed modules. Then it
moves the module into the best available
position, finds the next unplaced module
with the maximum number of connec-
tions, and so on, until all the modules are
placed. The best position for a module is
found by trying all available positions
and minimizing the length of the connec-
tions or by placing the module into a
zero-force position. [For every module

SCIENCE, VOL. 220

there is an equilibrium position where
the total pull from all other modules is
zero. A zero pull is equivalent to the
minimum length of the wire for all con-
nected signals (1 I)].

The placement improvement group
makes small local changes, such as pair-
wise exchange of modules, in an attempt
to improve placement. After one ex-
change the crossing count or wire length
is recalculated. If the exchange improves
the placement it is retained. Some
schemes accept some interchanges that
worsen the placement in order to im-
prove routability; others accept interac-
tive placement by users.

Following placement comes routing,
in which wiring paths among the cells are
defined. Routing is done by software that
attempts to minimize wire length or fol-
lows other optimization criteria. In stan-
dard cells the width of each wiring chan-
nel is varied to accommodate the wires it
contains at the most populated point. In
some software systems algorithms are
used to iterate between placement and
routing to optimize the total wire length
and critical path length.

The channel router has been the main
routing algorithm for standard cells for
many years, and is designed for routing
where the points to be connected are in
parallel rows. Routes are wired by using
horizontal tracks on one layer and verti-
cal tracks on another layer. The variable
channel width guarantees that all con-
nections can be made.

In Fig. 4 the layout of a typical stan-
dard cell is compared with that of anoth-
er methodology, the gate array. In the
standard cell the width of the wiring
channel is variable; wiring is clustered
toward the center of the wiring channels,
with some wasted space toward the out-
er ends.

Advantages of the standard cell meth-
odology are:

1) Rapid design turnaround time. If
everything is done with software, layout
of an LSI circuit of around 10,000 tran-
sistors may be accomplished in a few
months instead of a year or more. Logic
specification, layout, optimization, and
characterization with regard to delays,
drive capability, and loading are all es-
tablished when the cells are added to the
cell library, and these operations do not
need to be repeated at the cell level for
each design.

2) Flexibility. Designers can handle
special functions by creating new cells,
characterizing them, and adding them to
the library. And this flexibility is self-
propagating: the larger the library, the
greater the flexibility for future de-
signs.

29 APRIL 1983

Disadvantages of standard cells are:
1) Wasted chip area. The area occu-

pied by the wiring channels can easily
exceed 50 percent of the total chip area.
Because channel width is variable, the
width of a wiring channel must accom-
modate its greatest requirements. Some
designs may turn out to be impossible for
the computer to place and route within
the area restrictions of the chip. If a
great deal of designer intervention is
needed, the advantages of automation
are lost.

2) No savings in fabrication time.
Each chip must go through the complete
fabrication process.

Fabrication time can be saved by using
a programmable array, which contains
repeated cells independent of any partic-
ular circuit implementation and which
can be customized by modifying specific
mask layers. Programmable arrays are
partially prefabricated chips; that is,
large volumes of identical arrays are
manufactured and stockpiled. Then,
when a designer wishes to implement an
integrated circuit, the interconnections
for the particular circuit are specified in
the final layer or two.

The most common programmable ar-
ray is the gate array (also called a mas-
ter-slice or uncommitted logic array), a

SPECIFICATION

>

f

, Compare measurements
1'' ''?.to simulation results

Fig. 3. Design and fabrication of an integrated circuit. A procedural flow is followed that iterates
between synthesis and verification. Solid lines mark the flow of the design itself, while dashed
lines indicate the transfer of information.

two-dimensional matrix of identical
cells, each containing a fixed number (4
to 20) of uncommitted (unconnected)
transistors separated by wiring channels
(12). A circuit is constructed by specify-
ing the interconnections among the tran-
sistors within and between cells on the
final contact and metallization layers.

From a user standpoint, gate arrays
are like standard cells. Gate array de-
signers construct their circuits by using a
cell library (sometimes called a macro

library) of predefined logic elements, and
use graphics schematic entry or a design
language to enter the schematic into the
computer system. The task of placement
is similar to that with standard cells.

Routing of a gate array may be started
with a channel router and then "cleaned
up" with a Lee or line search router. The
Lee (grid expansion) router works on a
grid and is based on expanding a wave
from one point to another. At each step,
grids on a diamond-shaped wave front

Table 1 . Comparison of design methodologies.

Characteristic Gate
array

Standard
cells

Full
custom

Design time Short Short Long
Fabrication time Short Long Long
Chip area Large Intermediate Small
Cost Low Intermediate High
Versatility Low Intermediate High
Turnaround time for minor redesign Short Intermediate Long

Standard cel l Gate array

Variable width cells
n

,Bonding
pads

: Variable
wldth
wiring

channels

Cells

Bondlng
pads

- Fixed
channel

wldth

Test f u ~ c t l o n s Test functions

Fig. 4. Comparison of standard cell and gate array methodologies. The standard cell has
variable cell and wiring channel width, whereas both are fixed in the gate array.

Fig. 5. Completed integrated circuits. On the left
implemented in standard cell technology. On
representation of a routed gate array circuit.

470

is a photomicrograph of a portion of a circuit
the right is a computer-generated graphics

are expanded one step further, avoiding
obstacles and previously used grid
points. Each grid point through which
the wave passes is marked with a code
that stores the direction to the source of
the expansion. Once the target point has
been reached codes are followed in re-
verse order to yield the shortest path.

The line search algorithm is gridless
and finds a connection through a maze of
obstructions. It runs vertical and hori-
zontal expansion lines from the two
points to be connected. If any line en-
counters an obstacle, the router takes a
perpendicular path until a line parallel to
the original one can pass by the obstacle.
Two expanding nets are thus created and
the process is terminated when expan-
sion lines from both nets intersect, creat-
ing the desired connection. Although this
algorithm does not yield the shortest
path, it requires substantially less com-
puter memory and runs faster than the
Lee algorithm in most cases.

Because of the restrictive wiring ca-
pacity of gate arrays, either of the two
routers may not always achieve 100 per-
cent routing, and user intervention may
be necessary.

One major difference between stan-
dard cells and gate arrays is in the con-
struction of the logic elements. Whereas
a standard cell logic element is custom-
built from individual transistors, a gate
array logic element is defined by con-
necting transistors already contained in
array cells. A second major difference
has already been mentioned: whereas
the width of the routing channels is vari-
able in the standard cell, the array cell's
routing channels have a fixed (but not
necessarily uniform) width (Fig. 4).

Advantages of the gate array method-
ology are:

1) Rapid design turnaround time. The
savings in design time are the same as in
the standard cell methodology.

2) Low cost. By prefabricating the
chips the cost advantages of mass pro-
duction can be realized for low-volume
production.

3) Short fabrication time. Since only
the final metallization layers need to be
made, fabrication time is drastically cut.

Disadvantages of gate arrays are:
1) Wasted chip area. Gate arrays typi-

cally waste more area than standard cells
do because the individual positions of
the transistors cannot be optimized; in
fact, some transistors may go unused.
Also, 10 to 30 percent of the gate array
cells may be wasted because wiring
channels may run out of space if more
than 70 to 90 percent of the available
cells are occupied.

2) Decreased flexibility. Fewer circuit

SCIENCE, VOL. 220

functions can be realized than in stan-
dard cell or full custom methodologies
(for example, analog functions are diffi-
cult to implement optimally on a gate
array).

3) Possible wiring restrictions. Be-
cause of the fixed wiring channel width,
a particular design may contain too many
logic elements to be routable. In that
case the recourses are (i) use of a larger
array if one is available, (ii) designer
intervention and hand-routing of difficult
interconnections, (iii) partitioning of the
device onto more than one chip, or (iv)
reverting to the standard cell methodolo-
gy.

Figure 5 shows parts of a wired stan-
dard cell design and of a gate array. The
photograph on the left is of an actual
standard cell, while the photograph on
the right is of a plot of a gate array
obtained with an interactive graphics
system. Notice the differences in wiring
channel width between the two method-
ologies and the amount of space devoted
to interconnections and bonding pads.

The difficulties of placement and wir-
ing may limit both standard cells and
gate arrays to the LSI level of circuit
complexity (3). On the other hand, the
difficulties encountered in the layout of
VLSI chips may require that automation
be used for large designs. At the present
time both the standard cell and gate
array approaches provide designers with
quicker, less expensive alternatives to
full-custom chips. Also, designers in ei-
ther standard cell o r gate array method-
ology need not be "silicon sophisti-
cates. " Table 1 compares the gate array,
standard cell, and full-custom design
methodologies.

Programmable Logic Arrays

Another programmable array that is
established but not as universally appli-
cable as gate arrays is the programmable
logic array (PLA). It consists of two
rectangular arrays of gates called AND
and OR planes. The gates in both planes
can be customized by connections in the
final metallization layers.

Any desired logic function may be
realized by combinations of AND and
OR functions and their complements. In
a PLA, ANDing is done first by entering
the inputs into the AND plane along
parallel connections. The results of the
AND operations are then entered into
the OR plane perpendicularly along par-
allel connections. The results of the OR
operation are output on parallel connec-
tions and can be fed back into the AND
plane for another set of operations if

needed to perform the desired function.
Area reduction of the PLA is achieved
by logic minimization, folding (permuta-
tion and splitting of rows and columns),
and partitioning (13).

Programmable logic arrays represent
almost completely automated design-in
areas where they are applicable. To use a
PLA the user specifies the logic func-
tions to be implemented. After being
processed by logic simplification soft-
ware, logic equations are used to pro-
gram the PLA for the desired function.
The regular structure of PLA's makes it
possible to go directly from the simpli-
fied equations to the mask set without
placement, routing, or any other inter-
mediate steps. Often the design cycle is
shortened further by mapping into a pre-
fabricated PLA structure, thus requiring
a single masking step. PLA's, however,
have limited applicability; they are poor
for many logic functions, especially
where timing is critical. PLA's find the
most use as specialized parts of other
chips (for example, control logic of mi-
croprocessors). In addition, field-pro-
grammable logic arrays are available that
can be customized electrically by the
user.

In addition to the global design meth-
odologies already mentioned, several
shortcuts are being developed to opti-
mize various steps in the design process.

Design Shortcuts

Symbolic layout. Designers describe
transistors and their interconnections
and locations in a particular circuit by
using predefined symbols on a cathode-
ray tube terminal. Once stored, a sym-
bolic layout may be called up and auto-
matically implemented in a particular
technology; thus the same design may be
adapted to changes within a technology
without changing the layout description.
Thus, when an existing technology is
scaled down (dimensions are reduced by
some factor), only a few key design rules
need be changed in the stored layout
description; a new layout is not required.
In one symbolic layout system, design-
ers represent their designs on a floating
grid by manipulating shapes and lines,
mapped one-to-one with transistors and
interconnections (3). Compaction pro-
grams exist that attempt to condense the
layout to improve chip area use.

Bristle blocks. In bristle blocks func-
tional circuits are defined as rectangular
modules having specific interconnec-
tions ("bristles"). These modules have
been predefined and presimulated, and
are ready to be connected to one another

by "intermeshing" the bristles. The
claimed advantage of the bristle block
approach is that there are no routing
paths needed outside the blocks; all the
necessary connections are made auto-
matically at the edges. However, a major
limitation is that each block must inter-
act only with its immediate neighbors.
Because of this limitation, bristle blocks
may find the most use in computer-type
chips, where all blocks are organized
around a common data path.

Conclusions

Chip design is a long, complicated,
and expensive task, and even the small-
est error can be fatal to a project. As
circuit complexity increases to VLSI,
design tasks are becoming astronomical-
ly expensive, time-consuming, and er-
ror-prone, and manual implementation is
impractical o r unfeasible. A constraint
that design automation will always face
is that of solving problems of the next
generation with tools of (at best) the
current generation.

Design automation remains the hope
of VLSI designers for getting their chips
to the marketplace in a reasonable
amount of time and for obtaining a com-
petitive price. Design automation not
only saves money by reducing design
and fabrication time, but also helps the
community of systems and logic design-
ers to work more effectively and innova-
tively. A coherent, user-friendly, com-
pletely automated system of integrated
circuit design that requires little o r no
human intervention has yet to be real-
ized by many design institutions. Im-
proving and integrating existing design
automation software packages and in-
venting algorithms will continue to occu-
py industrial and academic institutions
for many years to come.

References and Notes

1. C. Mead and G. Lewicki, Electronics 55, 107
(1982).

2. L. M. Rosenberg, J . Digital Syst . 5 , 301 (1981).
3. P. Losleben and D. F. Barbe, Eds. Very Large

Scale Integration (VLSI) : Fundamentals and
Applications (Springer-Verlag, Berlin, 1980),
pp. 89-127.

4. M. Marshall, Electronics 53, 73 (1980).
5. S. Trimberger, IEEE Spectrum (June 1982), p.

?Q

6. M: Breuer, A. D. Friedman, A. A. Iosupovicz,
C o m ~ u t e r 14. 58 (1981).

7. T. C: Raymond, ibid., p. 89.
8. J. F. Skalski, M. J . Howes, D. V. Morgan, Eds.,

Large Scale Integration Devices, Circuits, and
S)stems (Wiley, Chichester, England, 1981), pp.
319-343.

9. S. McMinn, V L S I Des. (JulyIAugust 1982), p
16

10. L.' Lopp, Lambda (Second Quarter, 1981), p.
C 1
J L .

11. J. Soukup, Proc. IEEE 69, 1281 (1981).
12. A. R. Newton, ibid., p. 1189.
13. G. D. Hachtel, A. R- Nwton,. A . L. Sangio-

vanni-Vlncentelli, IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst . 1, 63 (1982).

29 APRIL 1983

