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Design Automation for 
Integrated Circuits 

Sydney B. Newell, Aart J .  de Geus, Ronald A. Rohrer 

The complexity of integrated circuits design process unless help is forthcom- 
is constantly increasing and the physical ing (1-5). For this help, designers are 
size of their individual components de- turning more and more to computers. 
creasing; for commercially available in- Computer-aided design (CAD) has 
tegrated circuits the complexity doubles been in use almost since the inception of 
every year (1-3). Like any rapidly ex- integrated circuits (3). In CAD, comput- 

Summary. With the ever-increasing complexity of integrated circuits, manual 
design methods have become intolerably slow and error-prone. The use of computers 
to automate some or all of the design process is necessary to minimize both design 
time and error incidence. In this article are discussed the design and fabrication of 
integrated circuits, selected techniques of design automation, and the problems 
associated with such automation. 

panding field, microelectronics is experi- 
encing "growing pains" because some of 
its areas are not keeping pace with the 
rest of the field. 

In the progression from idea to inte- 
grated circuit, the first phase, design, 
encompasses all tasks up to manufac- 
turing. The second phase, fabrication, 
deals with the physical creation .of the 
integrated circuit. Of the two phases, 
design is by far the more expensive and 
time-consuming. For example, to design 
a microprocessor chip containing 60,000 
to 70,000 transistors can require dozens 
of man-years and millions of dollars. 
But, after the initial setup of the manu- 
facturing process, fabrication of such a 
chip can take just weeks and cost thou- 
sands of dollars. Progress in integrated 
circuit development may be slowed or 
halted by the time- and cost-intensive 

ers analyze circuit and system behavior 
and designers use the results for guid- 
ance in correcting or enhancing their 
designs. Thus the role of the computer in 
CAD is one of an assistant to the design- 
er, who carries out the actual design 
tasks by making decisions based on the 
CAD results. 

In design automation, not only the 
analytical but also many of the synthetic 
design tasks are performed by comput- 
ers. Computers carry out a given design 
task by performing a series of iterations 
and are guided by the analytical results 
of each iteration to improve the design 
until the desired specifications are met. 
Thus in design automation using a form 
of artificial intelligence, the computer 
decides what actions to take and carries 
out the design tasks with little or no 
human intervention. 

Design automation is in a relatively 
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cialists in the field; this article will pro- 
vide an overview of design automation 
for scientists and technologists who are 
not involved in integrated circuit design. 

A brief introduction to integrated cir- 
cuits and their fabrication may be helpful 
in demonstrating the necessity for 
streamlining the design process. For sim- 
plicity, throughout this article we con- 
fine our discussions to digital circuits. 

Integrated Circuits and 

Their Fabrication 

An integrated circuit is a circuit con- 
tained on (or in) a continuous piece of 
solid material (usually silicon) called a 
die or chip. Components and wiring are 
fabricated simultaneously onto an inte- 
grated circuit. (In contrast, discrete 
steps are required for placing compo- 
nents and wiring onto a printed circuit 
board.) The circuit itself is usually speci- 
fied by a logic diagram, which is an 
interconnection of logic gates. 

Digital (binary) logic is composed of 
logic circuits. A logic circuit is realized 
with logic gates, each of which has in- 
puts and outputs and performs a logical 
operation. In such an operation a set of 
variables having the complementary val- 
ues 0 and 1 are treated as "false" and 
"true," respectively; translated to elec- 
tronics, a 0 is usually implemented with 
a low voltage (around O), and a 1 is 
usually implemented with a relatively 
high voltage (around 5 volts). Addition, 
subtraction, storing, counting, control- 
ling, and many other functions are 
achieved by specific interconnections 
among logic gates. 

Figure 1 gives names, symbols, and 
truth tables for some simple logic gates 
and their corresponding operations. A 
truth table shows the inputs on the left of 
a vertical line and the outputs on the 
right. Thus the truth table for the AND 
gate shows that the output, Y, is 1 only if 
both inputs A and B are 1; the output is 0 
for any other combination of inputs. 

The binary logic of digital circuits may 
be implemented by transistors, which act 
as switches. By connecting transistors in 
different ways, any desired electronic 
circuit function can be realized. Integrat- 
ed circuits, commonly 0.25 to 1 square 

29 APRIL 1983 465 



centimeter in area and about 1 millimeter 
thick, owe their compactness to this ba- 
sic circuit element. Today, an integrated 
circuit may contain from ten to hundreds 
of thousands of transistors, each measur- 
ing about 150 square micrometers. 

The complexity of an integrated circuit 
is described by the number of transistors 
it contains. In small-scale integration 
(SSI) a chip contains up to 100 transis- 
tors. Subsequent levels of complexity 
include medium-scale integration (MSI), 
with up to 1000 transistors; large-scale 
integration (LSI), with up to 10,000; and 
very large scale integration (VLSI), with 
more than 10,000 transistors. An inte- 
grated circuit is three-dimensional and 
can consist of up to 12 layers, each layer 
being composed of a semiconductor, a 
conductor, or an insulator. 

The semiconductor is usually silicon 
to which small, controlled amounts of an 
impurity (called a dopant) have been 
introduced to provide carriers for cur- 
rent. Semiconductors are of two types. 
In an n-doped semiconductor, a group V 
element (for example, phosphorus) is the 
dopant and provides electrons as current 
carriers. A p-doped semiconductor con- 
tains a group I11 element (for example, 
boron), which provides positive, elec- 
tron-deficient regions called holes as cur- 
rent carriers. Larger amounts of doping 
produce higher conductivities; the sub- 
strate, or supporting material for the 
circuit, is usually lightly doped with ei- 
ther type of semiconductor. Electrodes 
of transistors are made of semiconductor 
material, but usually contain more dop- 
ant than the substrate. 

The conductor may be a metal (for 
example, aluminum) or polysilicon, a 
polycrystalline form of silicon that has 
been heavily doped. Strips of conductors 
form electrical connections within and 
between circuit elements. The insulator 
is usually silicon dioxide and is used to 
separate conducting regions where no 
connections are desired. 

Integrated circuits contain several lay- 
ers of various combinations of differently 
doped material, interconnections, and 
silicon dioxide. In the fabrication of inte- 
grated circuits, the layers are added one 
at a time. A template called a mask 
determines the pattern for each layer; 12 
masks would be required to make an 
integrated circuit with 12 layers. Fabri- 
cation takes place by various multistep 
combinations of oxidation, mask protec- 
tion, etching, diffusion or ion implanta- 
tion, and vapor deposition. The whole 
cycle can take 4 weeks to several months 
on a commercial production line. 

At various stages the chips are 
checked for possible defects, and thor- 

ough functional testing is done after their 
completion. Because of the integral na- 
ture of integrated circuits, a defective 
chip cannot be repaired; it must be dis- 
carded. Defects have two origins: manu- 
facturing and design. 

Manufacturing defects are random and 
will affect a certain percentage of chips 
on a statistical basis. The yield, the num- 
ber of good chips divided by the total, 
decreases as the active chip area (the 
area occupied by components and wir- 
ing) increases. For a chip 0.2 inch on a 
side, doubling the active chip area 
causes a nearly sixfold decrease in yield 
(9).  

A design defect is traceable to one or 
more of the masks and will, of course, 
affect all chips in that fabrication series. 
Some design defects are detectable early 
in the fabrication process; if a design 
defect is found, the process can be halted 
and the defect corrected. In some cases a 
second iteration of design and fabrica- 
tion is needed to correct design defects 
in the first-pass chip. 

Two economic reasons dictate that 
redesign and refabrication be held to a 
minimum. First, design and production 
of an integrated circuit are extremely 
expensive. Second, delay in getting the 
chip to the marketplace results in lost 
sales and loss of a potential share of the 
market. To minimize the necessity for 
redesign and refabrication, the design 
process must generate a valid set of 
masks. 

1 0  
NOT gate or inverter  

AND gate 1 1  

OR gate  i : I ;  

NAND gate 1 1 0  

NOR gate  

Fig. 1. Names, symbols, and truth tables for 
some simple logic gates and their correspond- 
ing logical operations. 

General Design Procedure 

The mask set that begins the fabrica- 
tion process is the goal of the design 
process. To design an integrated circuit 
means to transform a functional specifi- 
cation into masks that are ready for 
fabrication. 

Integrated circuit design can be parti- 
tioned into two major tasks: logic specifi- 
cation, in which the goal is a logic dia- 
gram that accurately represents the de- 
sired electronic function, and physical 
specification, in which the goal is an 
exact description of the physical loca- 
tions of all circuit elements and their 
interconnections on the chip. The design 
tasks are carried out by continuously 
iterating between synthesis, the creative 
act of constructing a given part of a 
design, and verification, determining 
whether or not the design will perform 
according to specifications. That is, a 
designer creates part of a design, verifies 
it, uses the results of the verification to 
modify or correct (recreate) the design, 
reverifies it, and so on until, much later, 
the entire design is completely synthe- 
sized and verified. 

Often a hierarchical approach is taken 
in which a total design is decomposed 
into several simpler, functional modules, 
each of which may be broken into sub- 
modules, and so on until the submodules 
are simple enough to implement. (Hier- 
archy has the effect of reducing a large, 
unsolvable problem to several smaller, 
solvable problems.) Figure 2 illustrates 
hierarchical levels of an integrated cir- 
cuit. At the highest level, the circuit 
itself can be partitioned into functional 
modules. At lower levels, each function- 
al module can be decomposed into logic 
gates which, in turn, are represented by 
interconnections of transistors. At the 
lowest level, the transistors and their 
interconnections are described by physi- 
cal structures. 

At each level, each submodule and its 
interconnections with other submodules 
must be specified. Both synthesis and 
verification are performed at all levels, 
and verification is always needed when 
going from one level to another in either 
direction in the hierarchy. 

In the era of SSI, a circuit could be 
verified by physically constructing it 
from discrete circuit elements on a cir- 
cuit board and submitting it to exhaus- 
tive electronic testing. A major problem 
was that the discrete circuit elements 
often introduced extraneous electrical 
effects not reflective of the integrated 
circuit. With increased levels of integra- 
tion the circuit board approach soon 
became impractical, and it is in this 
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verification category that much of the 
existing CAD tools have been created. In 
particular, simulation, in which the oper- 
ation and performance of a circuit or 
system is predicted by a computer pro- 
gram, is now widely used by designers. 

Figure 3 presents an overview of the 
design process, fabrication, and testing. 
Steps (a) through (h) constitute the tasks 
necessary for logic specification; nor- 
mally many iterations are needed before 
a successful first-pass specification is 
obtained. At (a) a functional conception 
of the desired system is generated (syn- 
thesis). As a first approach to verifica- 
tion, a functional or system-level simula- 
tor (h) can check for satisfactory com- 
munication among functional blocks in a 
total system. Next, at (c)  each block is 
expanded into smaller modules that go 
through a complex cycle (r) of synthesis 
and verification and can be added to a 
library (d) for reuse in future designs. A 
part of the designer's input is a net list, 
which specifies the modules and how 
they are connected. These modules can 
be retrieved from the library (4 or newly 
constructed if they do not already exist. 
At (e) a logic simulator can check the 
design for correct function (verification); 
if the verification fails, then the designer 
modifies the specification [back to (c)  or 
(a)]. Next, a timing simulator (t) can 
determine whether the performance 
speed requirements of the circuit will be 
satisfied and can detect the critical paths 
(the paths whose speed limits the per- 
formance speed of the chip). Timing sim- 
ulators also indicate whether expected 
delays of the circuit elements will cause 
undesirable circuit behavior, such as rac- 
ing (an error that occurs when a device 
receives conflicting inputs at nearly the 
same time). The design may again be 
modified until acceptable results are ob- 
tained. 

An activity usually performed in paral- 
lel with the design is the creation of a set 
of test vectors (g)  that will be used to test 
the chip after fabrication. Test vectors 
are sets of values that, when applied to 
the inputs of an integrated circuit, gener- 
ate outputs whose values are known for 
a properly working circuit. An ideal set 
of test vectors thoroughly exercises all 
parts of the chip and detects all faulty 
circuit elements. At (e) an initial set of 
test vectors was created to be used for 
the logic simulation; usually the results 
of the simulation indicate changes to be 
made in the design and in the test vec- 
tors. The modified set of test vectors is 
used next in the timing simulation, and 
perhaps is modified again. In practice, a 
set of test vectors covering all possible 
faults may require too much testing time; 
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a compromise subset of test vectors is 
often selected, and a fault simulator (h) 
can determine whether the subset is 
good enough to test the finished device. 
Often, further design modifications may 
be needed if fault simulation indicates 
that some possible key faults cannot be 
detected because they are buried too 
deeply in the design. 

At (13 physical specification begins 
with layout, which determines the exact 
locations of the transistors on the chip 
and specifies a wiring pattern that will 
interconnect them. This phase of the 
design involves translating every ele- 
ment and its interconnections into a 
physical description and assigning it a 
location. [The average number of tran- 
sistors that can be manually laid out per 

person per day lies somewhere between 
3 and 40, depending on the regularity of 
the configuration (lo).] Next, more veri- 
fications (j) must be performed to make 
sure that design rules (rules pertaining to 
width, length, and spacing imposed on 
the geometrical features of an integrated 
circuit by the process technology) and 
electrical rules (for example, each ele- 
ment must be connected and there must 
be no shorts between power and ground) 
are obeyed. Software tools currently 
available for these tasks are the design 
rule checker (DRC) and the electrical 
rule checker (ERC). If the design vio- 
lates any rules the layout must be modi- 
fied until all rules are obeyed. 

When a satisfactory layout has been 
obtained, yet another verification is 

Fig. 2. Hierarchical decompo- 
sition of an integrated circuit 
into functional, logic, transis- 
tor, and physical levels. 
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needed. Up to this point, timing simula- 
tions had been based on approximate 
delays between circuit elements, be- 
cause their exact locations were not yet 
known. Exact delays depend on the 
length and composition of the conduc- 
tive paths: a signal takes longer to attain 
its final value through a long polysilicon 
path than through a short metal one. 
Now that all locations and path lengths 
are known exactly, this information is 
used to extract exact delays (k), which 
are fed back into the timing simulator (1). 
If any timing errors or unacceptable de- 
lays are found, the layout or the design 
must again be modified and the DRC and 
ERC again used. 

When a satisfactory layout is ob- 
tained, a program decomposes all geo- 
metrical data into rectangles and gener- 
ates a pattern generator tape (m).  The 
pattern generator tape contains all topo- 
logical information about the layout and 
is used in a mask-making machine to 
generate the mask set for fabrication. In 
the test vector loop a program generates 
a test vector tape (n) that will program 
the tester. 

Finally, the chip is fabricated (o), test- 
ed ( p ) ,  and packaged (q). Figure 3 pre- 
sents a simplified view of the design 
process; in actuality many iterations are 
needed between synthesis and verifica- 
tion. 

On the right of the flow chart the 
characterization of the small modules (r) 
follows steps similar to those in the left 
part of the flow chart. First the module is 
represented by a logic diagram and veri- 
fied with timing simulation. The next 
step in the hierarchy is the circuit dia- 
gram, followed by circuit simulation (not 
used in the left part of the flow chart). A 
circuit simulator fine-tunes the design of 
the module by simulating the behavior of 
the individual transistors and their inter- 
connections. Next, custom layout man- 
ually defines all physical devices. After 
design rule checking, circuit extraction, 
and resimulation the module has been 
completely characterized and is ready to 
be used in the circuit or added to the 
library. 

Total design automation, in which the 
desired circuit behavior is specified at 
one end and a set of masks comes out the 
other is, as yet, seldom realized. Howev- 
er, computer programs that automate 
portions of the design process have been 
and are being written. Because the lay- 
out phase is currently the most time- 
consuming and error-prone stage of inte- 
grated circuit design and because rela- 
tively simple decision-making algorithms 
are needed here, the first efforts in de- 
sign automation have focused on this 

phase. Existing design automation pro- 
grams use various structured approaches 
to the method of design (called the "de- 
sign methodology"). 

In a "full-custom" chip, transistors 
are manually placed one at a time, re- 
quiring the full fabrication process for 
each design (other methodologies to be 
discussed allow some degree of prefabri- 
cation). Although hierarchical design can 
reduce time and cost to some extent, the 
full-custom chip has the longest turn- 
around time and highest cost of any 
methodology. Still, in some applications 
this is the methodology of choice. Man- 
ual placement by human beings is the 
best (albeit the slowest) way to achieve 
the most efficient packing of transistors 
and, therefore, the smallest size (smaller 
size results in lower manufacturing cost 
and higher yields). If a very large number 
of identical chips are to be fabricated, 
the design time and cost of full-custom 
design can be amortized over all chips 
sold. Also, applications in which high 
performance (speed and power) is criti- 
cal may require the full-custom design 
process. 

Established Design 

Automation Methodologies 

At present, only two methodologies 
enjoy widespread use: standard cells and 
gate arrays. In the standard cell (or poly- 
cell) approach the designer, instead of 
constructing a circuit "from scratch" 
out of transistors, uses a library of cells 
that represent predefined logic func- 
tions, usually at the logic gate level. 
These cells have been constructed from 
individual transistors, and the cell di- 
mensions, performance, and electrical 
characteristics have been optimized and 
recorded. 

To use the standard cell approach, the 
designer first constructs the design by 
using logic functions represented in the 
standard cell library. The next step is to 
give the computer information telling 
what logic functions are in the design and 
how they are connected. Design descrip- 
tions are entered into a computer system 
by one of two methods: 

1) Graphics schematic entry. The de- 
signer "draws" the schematic onto a 
monitor with a set of graphic symbols 
that represent logic functions. A comput- 
er program translates the graphic sym- 
bols into a machine-usable description of 
the circuit. Of the two methods, this one 
is easier for the designer to use but 
requires more hardware and software. 

2) Hardware description language. 
The designer translates the design into a 

hardware description language, generat- 
ing a written description similar to a 
computer program. This description is in 
turn translated into a machine-usable cir- 
cuit description (as in graphics schematic 
entry). The method requires less hard- 
ware and software than graphics sche- 
matic entry, but the designer must learn 
a specialized language. The possibility of 
creating hard-to-detect discrepancies be- 
tween the schematic and its description 
is a major drawback of the method. Also, 
the danger of introducing errors during 
design revision has doubled because 
changes in the design must be made both 
to the schematic and to the language 
description. 

The circuit is then verified by simula- 
tion, using the known, predefined char- 
acteristics of the cells in the cell library. 
The next task is placement, in which 
cells are laid out in rows with spaces 
reserved between the rows for wiring 
channels. Connection points for input 
and output, called bonding pads, are 
placed around the periphery of the chip. 
Cells having many connections in com- 
mon are placed close to each other, and 
those that connect to bonding pads are 
placed near the edge of the chip. In some 
design automation systems, placement is 
done automatically by the software; in 
others, the designer specifies the place- 
ment; in still others, software placement 
is done initially with designer interven- 
tion if difficulties or special cases arise. 

Most successful placement algorithms 
are heuristic and use directed forces, 
vectors representing the direction and 
distance between interconnected blocks. 
In most placement algorithms the criteria 
for success are minimization and uni- 
formization of the crossing count (the 
number of wires crossing each terminal 
position in a cell row) and minimization 
of the combined wire length of all con- 
nections (1 1). 

Two major groups of placement algo- 
rithms are constructive placement and 
iterative improvement of placement. The 
constructive placement algorithms in- 
clude the epitaxial growth algorithm, in 
which manual placement of a few mod- 
ules is used to start the process. The 
algorithm finds the next unplaced mod- 
ule with the maximum number of con- 
nections to the placed modules. Then it 
moves the module into the best available 
position, finds the next unplaced module 
with the maximum number of connec- 
tions, and so on, until all the modules are 
placed. The best position for a module is 
found by trying all available positions 
and minimizing the length of the connec- 
tions or by placing the module into a 
zero-force position. [For every module 

SCIENCE, VOL. 220 



there is an equilibrium position where 
the total pull from all other modules is 
zero. A zero pull is equivalent to the 
minimum length of the wire for all con- 
nected signals (1 I)]. 

The placement improvement group 
makes small local changes, such as pair- 
wise exchange of modules, in an attempt 
to improve placement. After one ex- 
change the crossing count or wire length 
is recalculated. If the exchange improves 
the placement it is retained. Some 
schemes accept some interchanges that 
worsen the placement in order to im- 
prove routability; others accept interac- 
tive placement by users. 

Following placement comes routing, 
in which wiring paths among the cells are 
defined. Routing is done by software that 
attempts to minimize wire length or fol- 
lows other optimization criteria. In stan- 
dard cells the width of each wiring chan- 
nel is varied to accommodate the wires it 
contains at the most populated point. In 
some software systems algorithms are 
used to iterate between placement and 
routing to optimize the total wire length 
and critical path length. 

The channel router has been the main 
routing algorithm for standard cells for 
many years, and is designed for routing 
where the points to be connected are in 
parallel rows. Routes are wired by using 
horizontal tracks on one layer and verti- 
cal tracks on another layer. The variable 
channel width guarantees that all con- 
nections can be made. 

In Fig. 4 the layout of a typical stan- 
dard cell is compared with that of anoth- 
er methodology, the gate array. In the 
standard cell the width of the wiring 
channel is variable; wiring is clustered 
toward the center of the wiring channels, 
with some wasted space toward the out- 
er ends. 

Advantages of the standard cell meth- 
odology are: 

1) Rapid design turnaround time. If 
everything is done with software, layout 
of an LSI circuit of around 10,000 tran- 
sistors may be accomplished in a few 
months instead of a year or more. Logic 
specification, layout, optimization, and 
characterization with regard to delays, 
drive capability, and loading are all es- 
tablished when the cells are added to the 
cell library, and these operations do not 
need to be repeated at the cell level for 
each design. 

2) Flexibility. Designers can handle 
special functions by creating new cells, 
characterizing them, and adding them to 
the library. And this flexibility is self- 
propagating: the larger the library, the 
greater the flexibility for future de- 
signs. 
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Disadvantages of standard cells are: 
1) Wasted chip area. The area occu- 

pied by the wiring channels can easily 
exceed 50 percent of the total chip area. 
Because channel width is variable, the 
width of a wiring channel must accom- 
modate its greatest requirements. Some 
designs may turn out to be impossible for 
the computer to place and route within 
the area restrictions of the chip. If a 
great deal of designer intervention is 
needed, the advantages of automation 
are lost. 

2) No savings in fabrication time. 
Each chip must go through the complete 
fabrication process. 

Fabrication time can be saved by using 
a programmable array, which contains 
repeated cells independent of any partic- 
ular circuit implementation and which 
can be customized by modifying specific 
mask layers. Programmable arrays are 
partially prefabricated chips; that is, 
large volumes of identical arrays are 
manufactured and stockpiled. Then, 
when a designer wishes to implement an 
integrated circuit, the interconnections 
for the particular circuit are specified in 
the final layer or two. 

The most common programmable ar- 
ray is the gate array (also called a mas- 
ter-slice or uncommitted logic array), a 

SPECIFICATION 

> 

f 

, Compare measurements 
1'' ''?.to simulation results 

Fig. 3.  Design and fabrication of an integrated circuit. A procedural flow is followed that iterates 
between synthesis and verification. Solid lines mark the flow of the design itself, while dashed 
lines indicate the transfer of information. 



two-dimensional matrix of identical 
cells, each containing a fixed number (4 
to 20) of uncommitted (unconnected) 
transistors separated by wiring channels 
(12). A circuit is constructed by specify- 
ing the interconnections among the tran- 
sistors within and between cells on the 
final contact and metallization layers. 

From a user standpoint, gate arrays 
are like standard cells. Gate array de- 
signers construct their circuits by using a 
cell library (sometimes called a macro 

library) of predefined logic elements, and 
use graphics schematic entry or a design 
language to enter the schematic into the 
computer system. The task of placement 
is similar to that with standard cells. 

Routing of a gate array may be started 
with a channel router and then "cleaned 
up" with a Lee or line search router. The 
Lee (grid expansion) router works on a 
grid and is based on expanding a wave 
from one point to another. At each step, 
grids on a diamond-shaped wave front 

Table 1 .  Comparison of design methodologies. 

Characteristic Gate 
array 

Standard 
cells 

Full 
custom 

Design time Short Short Long 
Fabrication time Short Long Long 
Chip area Large Intermediate Small 
Cost Low Intermediate High 
Versatility Low Intermediate High 
Turnaround time for minor redesign Short Intermediate Long 

Standard cel l  Gate array 

Variable width cells 
n 

,Bonding 
pads 

: Variable 
wldth 
wiring 

channels 

Cells 

Bondlng 
pads 

- Fixed  
channel 

wldth 

Test f u ~ c t l o n s  Test functions 

Fig. 4. Comparison of standard cell and gate array methodologies. The standard cell has 
variable cell and wiring channel width, whereas both are fixed in the gate array. 

Fig. 5. Completed integrated circuits. On the left 
implemented in standard cell technology. On 
representation of a routed gate array circuit. 

470 

is a photomicrograph of a portion of a circuit 
the right is a computer-generated graphics 

are expanded one step further, avoiding 
obstacles and previously used grid 
points. Each grid point through which 
the wave passes is marked with a code 
that stores the direction to the source of 
the expansion. Once the target point has 
been reached codes are followed in re- 
verse order to yield the shortest path. 

The line search algorithm is gridless 
and finds a connection through a maze of 
obstructions. It runs vertical and hori- 
zontal expansion lines from the two 
points to be connected. If any line en- 
counters an obstacle, the router takes a 
perpendicular path until a line parallel to 
the original one can pass by the obstacle. 
Two expanding nets are thus created and 
the process is terminated when expan- 
sion lines from both nets intersect, creat- 
ing the desired connection. Although this 
algorithm does not yield the shortest 
path, it requires substantially less com- 
puter memory and runs faster than the 
Lee algorithm in most cases. 

Because of the restrictive wiring ca- 
pacity of gate arrays, either of the two 
routers may not always achieve 100 per- 
cent routing, and user intervention may 
be necessary. 

One major difference between stan- 
dard cells and gate arrays is in the con- 
struction of the logic elements. Whereas 
a standard cell logic element is custom- 
built from individual transistors, a gate 
array logic element is defined by con- 
necting transistors already contained in 
array cells. A second major difference 
has already been mentioned: whereas 
the width of the routing channels is vari- 
able in the standard cell, the array cell's 
routing channels have a fixed (but not 
necessarily uniform) width (Fig. 4). 

Advantages of the gate array method- 
ology are: 

1) Rapid design turnaround time. The 
savings in design time are the same as in 
the standard cell methodology. 

2) Low cost. By prefabricating the 
chips the cost advantages of mass pro- 
duction can be realized for low-volume 
production. 

3) Short fabrication time. Since only 
the final metallization layers need to be 
made, fabrication time is drastically cut. 

Disadvantages of gate arrays are: 
1 )  Wasted chip area. Gate arrays typi- 

cally waste more area than standard cells 
do because the individual positions of 
the transistors cannot be optimized; in 
fact, some transistors may go unused. 
Also, 10 to 30 percent of the gate array 
cells may be wasted because wiring 
channels may run out of space if more 
than 70 to 90 percent of the available 
cells are occupied. 

2) Decreased flexibility. Fewer circuit 
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functions can be realized than in stan- 
dard cell or full custom methodologies 
(for example, analog functions are diffi- 
cult to  implement optimally on a gate 
array). 

3) Possible wiring restrictions. Be- 
cause of the fixed wiring channel width, 
a particular design may contain too many 
logic elements to be routable. In that 
case the recourses are (i) use of a larger 
array if one is available, (ii) designer 
intervention and hand-routing of difficult 
interconnections, (iii) partitioning of the 
device onto more than one chip, or (iv) 
reverting to the standard cell methodolo- 
gy. 

Figure 5 shows parts of a wired stan- 
dard cell design and of a gate array. The 
photograph on the left is of an actual 
standard cell, while the photograph on 
the right is of a plot of a gate array 
obtained with an interactive graphics 
system. Notice the differences in wiring 
channel width between the two method- 
ologies and the amount of space devoted 
to interconnections and bonding pads. 

The difficulties of placement and wir- 
ing may limit both standard cells and 
gate arrays to the LSI level of circuit 
complexity (3). On the other hand, the 
difficulties encountered in the layout of 
VLSI chips may require that automation 
be used for large designs. At the present 
time both the standard cell and gate 
array approaches provide designers with 
quicker, less expensive alternatives to 
full-custom chips. Also, designers in ei- 
ther standard cell o r  gate array method- 
ology need not be "silicon sophisti- 
cates. " Table 1 compares the gate array, 
standard cell, and full-custom design 
methodologies. 

Programmable Logic Arrays 

Another programmable array that is 
established but not as  universally appli- 
cable as  gate arrays is the programmable 
logic array (PLA). It consists of two 
rectangular arrays of gates called AND 
and OR planes. The gates in both planes 
can be customized by connections in the 
final metallization layers. 

Any desired logic function may be 
realized by combinations of AND and 
OR functions and their complements. In 
a PLA, ANDing is done first by entering 
the inputs into the AND plane along 
parallel connections. The results of the 
AND operations are then entered into 
the OR plane perpendicularly along par- 
allel connections. The results of the OR 
operation are output on parallel connec- 
tions and can be fed back into the AND 
plane for another set of operations if 

needed to perform the desired function. 
Area reduction of the PLA is achieved 
by logic minimization, folding (permuta- 
tion and splitting of rows and columns), 
and partitioning (13). 

Programmable logic arrays represent 
almost completely automated design-in 
areas where they are applicable. To  use a 
PLA the user specifies the logic func- 
tions to be implemented. After being 
processed by logic simplification soft- 
ware, logic equations are used to pro- 
gram the PLA for the desired function. 
The regular structure of PLA's makes it 
possible to  go directly from the simpli- 
fied equations to  the mask set without 
placement, routing, or any other inter- 
mediate steps. Often the design cycle is 
shortened further by mapping into a pre- 
fabricated PLA structure, thus requiring 
a single masking step. PLA's, however, 
have limited applicability; they are poor 
for many logic functions, especially 
where timing is critical. PLA's  find the 
most use as specialized parts of other 
chips (for example, control logic of mi- 
croprocessors). In addition, field-pro- 
grammable logic arrays are available that 
can be customized electrically by the 
user. 

In addition to  the global design meth- 
odologies already mentioned, several 
shortcuts are being developed to opti- 
mize various steps in the design process. 

Design Shortcuts 

Symbolic layout. Designers describe 
transistors and their interconnections 
and locations in a particular circuit by 
using predefined symbols on a cathode- 
ray tube terminal. Once stored, a sym- 
bolic layout may be called up and auto- 
matically implemented in a particular 
technology; thus the same design may be 
adapted to changes within a technology 
without changing the layout description. 
Thus, when an existing technology is 
scaled down (dimensions are reduced by 
some factor), only a few key design rules 
need be changed in the stored layout 
description; a new layout is not required. 
In one symbolic layout system, design- 
ers represent their designs on a floating 
grid by manipulating shapes and lines, 
mapped one-to-one with transistors and 
interconnections (3). Compaction pro- 
grams exist that attempt to condense the 
layout to improve chip area use. 

Bristle blocks. In bristle blocks func- 
tional circuits are defined as  rectangular 
modules having specific interconnec- 
tions ("bristles"). These modules have 
been predefined and presimulated, and 
are ready to be connected to one another 

by "intermeshing" the bristles. The 
claimed advantage of the bristle block 
approach is that there are no routing 
paths needed outside the blocks; all the 
necessary connections are made auto- 
matically at  the edges. However, a major 
limitation is that each block must inter- 
act only with its immediate neighbors. 
Because of this limitation, bristle blocks 
may find the most use in computer-type 
chips, where all blocks are organized 
around a common data path. 

Conclusions 

Chip design is a long, complicated, 
and expensive task, and even the small- 
est error can be fatal to  a project. As 
circuit complexity increases to VLSI, 
design tasks are becoming astronomical- 
ly expensive, time-consuming, and er- 
ror-prone, and manual implementation is 
impractical o r  unfeasible. A constraint 
that design automation will always face 
is that of solving problems of the next 
generation with tools of (at best) the 
current generation. 

Design automation remains the hope 
of VLSI designers for getting their chips 
to the marketplace in a reasonable 
amount of time and for obtaining a com- 
petitive price. Design automation not 
only saves money by reducing design 
and fabrication time, but also helps the 
community of systems and logic design- 
ers to  work more effectively and innova- 
tively. A coherent, user-friendly, com- 
pletely automated system of integrated 
circuit design that requires little o r  no 
human intervention has yet to  be real- 
ized by many design institutions. Im- 
proving and integrating existing design 
automation software packages and in- 
venting algorithms will continue to  occu- 
py industrial and academic institutions 
for many years to  come. 
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