
6 x 10' years, about 300 times longer 
than that for Earth. The longer lifetime 
for Venus reflects the higher abundance 
of 4He (factor of 100) and the lower 
escape efficiency (factor of 3). Escape 
from Venus is limited by the relatively 
small quantities of gas which extend 
above the plasmapause. 

Venus has lost a quantity of 4He 
equivalent to 1.8 x 10'' cm-2 over the 
past 6 X 10' years. The present atmo- 
sphere is unlikely to retain appreciable 
quantities of its initial helium-escape 
would lead to a reduction of the primor- 
dial abundance by a factor of 5 x 
(17). Contemporary escape should mir- 
ror the average quantity of 4He released 
by the solid planet over the past lo9 
years. The necessary source would be 
supplied by decay of uranium and thori- 
um if the abundance of these elements in 
Venus's l~thosphere were similar to that 
for Earth (18). 

Venus's atmosphere also includes 
measurable quantities of 4 0 ~ r ,  formed 
by decay of 40K. The relative abun- 
dances of 40Ar in the terrestrial and 
Venus atmospheres suggest that the av- 
eraged source of 4 0 ~ r  at Venus's surface 
is less than that for Earth by about a 
factor of 4 (19, 20). The lower release 
rate could reflect either smaller abun- 
dances of 40K or less efficient mecha- 
nisms for transfer of gas to the atmo- 
sphere. Measurements by Venera 13 and 
Venera 14 (21) suggest that potassium in 
Venus's surface material is similar to 
that for typical terrestrial basalts. In this 
case the lower abundance of 40Ar on 
Venus could be due to less efficient 
degassing, perhaps reflecting a reduced 
role for tectonic activity in the presence 

als prior to planetary formation (19, 26); 
the low abundance of H 2 0  is due to 
escape of H and 0 (12,25,27) evidenced 
by enrichment of contemporary deuteri- 
um (28). 
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of high surface temperatures (22). How- 
ever, we might expect a differential ef- Desickling of Sickled Erythrocytes by 
fect for helium. Helium can escape by 
molecular diffusion from a depth of 1 km 
on Venus, aided by the high surface 
temperature, while the corresponding dif- 
fusion length for Earth is only 400 cm (23). 

In summary, Venus's atmosphere con- 
tains 160 times more 4He than the atmo- 
sphere of Earth. The source of 4He is 
similar in magnitude for both planets, 
suggesting comparable abundances of 
uranium and thorium, Independent argu- 
ments suggest that the two planets have 
similar abundances of potassium, and it 
follows that the magnitude of the plane- 
tary heat flux should be similar for both 
bodies. From these results, together with 
information for nitrogen (24), carbon, 
water (25), and noble gases (19), we 
conclude that Venus and Earth had simi- 
lar origins. The high concentration of 
primordial noble gases on Venus is at- 
tributed to capture of solar wind materi- 
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Pulsed Radio-Frequency Field 

Abstract. Electric fields were found to deform sickled erythrocytes. When the 
intensity of applied fields exceeded a threshold value, sickled erythrocytes trans- 
formed into a spherical shape. Prolonged application of the field usually caused 
hemolysis of erythrocytes. Deformation of red blood cells could be partly reversed if 
the field was turned o f f  at an early stage. The cause of desickling may be the 
interaction of the field with the erythrocyte merrzbrune and also with gelled 
intracellular hemoglobin S rnolecules. 

In patients with sickle cell anemia, red 
cell sickling is caused by the intracellular 
polymerization of deoxy-hemoglobin-S 
molecules. This polymerization can be 
inhibited by chemicals that interact with 
the hemoglobin molecule (1, 2) or with 
the erythrocyte membrane (3, 4). Chemi- 
cals such as cetiedil interact with the red 
cell membrane to increase water intake 
and inhibit red cell sickling at a concen- 
tration of 1 to 3 percent of intracellular 
hemoglobin (3-5). 

We report a method for reversing red 
cell sickling without using chemicals. We 
found that sickled cells were converted 
within several minutes to a spherical 
shape by the application of pulsed radio- 
frequency (RF) fields. Experiments were 
carried out by placing a suspension of 
sickled red blood cells in an isotonic 
saline solution between two parallel Pt-Ir 
wires (see legends to Figs. 1 and 2 for 
details). We chose a short pulse width of 
5 msec with an interval of 1 second to 

411 



facilitate heat dissipation. The RF fields 
were applied to the sample with an atten- 
uator so that the input voltage could be 
adjusted in small steps. The scheme of 
the general setup is shown in Fig. 2 
(inset). 

Blood samples were obtained from 
persons with sickle cell anemia. Erythro- 
cyte suspensions in a small vial were 
deoxygenated by flushing nitrogen gas at 
37°C for at least 30 minutes. A trace of 
sodium hydrosullite was then added to 
the suspension to prevent reoxygena- 
tion. Figure la shows sickled red blood 
cells prepared by this method. The field 
strength was increased stepwise with a 
waiting period of 10 to 15 minutes at each 
step. Once the threshold was reached, 
the shape change of erythrocytes took 
place within a few minutes. The time 
course of the change was followed by 
light microscopy and recorded by a se- 
ries of photographs. Figure lb shows 
that the change to a spherical shape 
occurred in the presence of RF fields. If 

we continued to apply an RF field for 15 
to 20 minutes, red cells began to hemo- 
lyze. 

The desickling of red blood cells oc- 
curs at a well-defined threshold, which is 
determined by the frequency of the ap- 
plied field, the duration and interval of 
pulses, and the length of the waiting 
period. The shape change can be only 
partly reversed if the field is turned off at 
an early stage. Thresholds at different 
frequencies (between 10 kHz and 1 
MHz) were determined; the results are 
shown in Fig. 2. Although threshold val- 
ues increase with the frequency of the 
applied field, the rise is much less than 
expected. 

Previous studies showed that pulsed 
electric fields produce effects on normal 
red cells including changes ih orienta- 
tion, alignment, and shape (6-10). Kino- 
sita and Tsong (11-14) found that square 
pulses at levels of a few kilovolts per 
centimeter for a duration of 20 to 30 psec 
caused pore formation in the red cell 

Fig. 1. (a) Sickkd ted blood cells before exposure to pulsed fields (~800). (b) Shape change in 
the presence of the field at 100 kHz. The field strength was about 3.5 kVIcm with a pulse 
duration of 5 msec and an interval of 1 second. The intervals between these photographs are 
about 2 minutes; they were taken while the field was on. Because of the short pulse width and 
long interpulse interval, no temperature rise was noted during the exposure of samples to RF 
fields. 

Fig. 2. Frequency de- 
pendence of threshold 
E,,, for the field-in- 
duced shape change. 
The experimental 
conditions are as de- 
scribed in the legend 
of Fig. 1. (Solid line) 
Theoretical values 
calculated from Eq. 1 
(time constant T as- 
sumed to be 5.3 x 
lo-' second). (Inset) 
Experimental setup; 
A, Tektronix TMSOO 
oscillator and plug-ins 
for pulsation; B, EN1 
240L power amplifier; 
C, Tektronix 5403 os- 
cilloscope; D, Gener- 
al Radio attenuator; 
E, sample holder, 
which consists of 
two Pt-lr wires (50 
pm with a spacing 
of 0.5 mm). 

membrane, increasing the flux of Na+, 
K', and oxygen. They stated that the 
pores induced by pulsation were large 
enough to permit the influx of water. 
This observation suggests that dilution of 
hemoglobin S by water influx is a mecha- 
nism for desickling by RF fields. Howev- 
er, dielectric measurements by Delalic 
(15) indicated that an a-c field of 10 Vlcm 
is sufficient to at least partly reverse 
extracellular gelation of hemoglobin S if 
the concentration and temperature are 
near the critical region. This observation 
indicates that RF fields can interact di- 
rectly with gelled hemoglobin S mole- 
cules and deform or disintegrate liquid 
crystalline tactoids. Recently, Tanaka et 
al. (16) reported that a potential of a few 
volts can cause reversible volume 
changes of polyelectrolyte (acrylamide) 
gels. This suggests field-induced struc- 
tural changes of polyelectrolyte systems. 

However, at low frequencies, the elec- 
trical field inside the cell would be small- 
er than that of the applied field because 
of the high electrical resistance of the 
erythrocyte membrane. Therefore, the 
membrane effect seems to play a domi- 
nant role at low frequencies. The poten- 
tial produced by an external field, Eo, 
across the membrane of spherical cells 
can be calculated from (1 7) 

- 

- 

- 0 0 
0 

& I I I I 1 I I 
10 100 

where R is the radius of the cell, w is the 
angular frequency ( 2 d ,  and T is the 
time constant. At sufficiently low fre- 
quencies, the potential difference across 
the membrane becomes AV = 1.5Rh. 
Assuming the average radius of erythro- 
cytes to be about 4 x cm, the po- 
tential AV is about 1.8 V. This value is 
somewhat larger than the critical field of 
pore formatio-1.0 V-found by Kino- 
sita and Tsong with normal red cells. 
Because the conformation of sickled 
erythrocytes differs considerably from 
the spherical shape, these calculations 
may not apply directly to sickled cells. In 
fact, we observed that severely sickled 
cells are hard to deform and require 
higher field strengths than slightly sick- 
led cells. In addition, the membrane of 
sickled erythrocytes may be more rigid 
than that of nomal red cells. Consider- 
ing these factors, our value and that 
observed by Kinosita and Tsong are suf- 
ficiently close. The large potential in- 
duced across the membrane is the cause 
of pore formation, which entails the in- 
flux of water in red cells. 

At high frequedcies, the induced po- 
tential across the membrane decreases 
as indicated by Eq. 1. Therefore, a larger 
field must be applied to the cell suspen- 
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sion to induce a significant potential Female Moorhens Compete for Small Fat Males 
across the membrane. The threshold Eth 
is calculated theoretically from Eq. 1 and 
is shown in Fig. 2 along with measured 

Abstract. Female moorhens in jocks competed with each other to obtain mates. 
The heaviest females won most of the agonistic encounters, and these females paired 
with males that had large fat reserves. Fat males tended to be small, possibly 
because of energetic constraints on birds of large body size. Females paired with fat 
males initiated more nesting attempts in a season. 

points. The rate of increase in Eth is slow 
below 100 kHz and the agreement be- 
tween the theoretical and experimental 
results is satisfactory. However, above 
200 kHz the theoretical curve begins to 
rise sharply and the disagreement be- 

Any attribute that improves the 
chance of mating success should, theo- 

and typically occurred when a female 
approached a courting pair (10). These 
encounters sometimes led to fighting, tween the theoretical and experimental 

results becomes apparent. Since the 
erythrocyte membrane is electrically 

retically, be subject to strong positive 
selection, a process that Darwin (I) 
called sexual selection. Although many 

with the antagonists jumping into the air 
and striking at each other with their 
sharply clawed feet. Marked females in shunted at these frequencies, the field 

intensity in the cell would be much high- 
er than at low frequencies. Therefore, 

field studies have led to the identification 
of characteristics that are likely to be 
responsible for success in competition 

competition for males participated in 
more fights than marked males 
(N1 = 26, N2 = 12; binomial test, the internal field would become suffi- 

cient to perturb the structure of gelled 
hemoglobin S. This may be why the 

for mates (intrasexual selection) (2), few 
studies have resulted in the identification 
of characteristics in one sex that are 

P = .033; combined observations from 
the 1978-79 and 1979-80 winters). Dur- 
ing the 1978-79 and 1979-80 winters, the observed frequency dependence of Eth 

deviates from the curve predicted by Eq. 
1. 
From these results and theoretical con- 
siderations, we assume that the applica- 
tion of RF fields causes changes in the 
red cell membrane that may induce wa- 

preferred by members of the opposite 
sex (intersexual selection) (3). A field 
study of the moorhen Gallinula chloro- 

numbers of agonistic encounters ob- 
served (including fights) were 85 and 
152, respectively, in encounters in which pus has revealed a characteristic in 

males that is subject to intersexual selec- 
tion in a situation in which females com- 

both members of a dyad were marked, 
and 171 and 73, respectively, in encoun- 
ters in which only one bird was marked. Pete for access to their preferred mates. 

A female's choice of mate may be a 
critical determinant of reproductive suc- 

ter uptake into the cells. In addition, RF 
fields seem to perturb the structure of 
intracellular hemoglobin S gels. 

SHIRO TAKASHIMA 

These data were used to express each 
female's success in terms of the percent- 
age of agonistic encounters won (16). 
The best predictor of the outcome of 

cess in situations in which males contrib- 
ute to parental care or defend critical 
resources (4, 5). Females may benefit by 
competing for mates when the males 
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aggressive encounters in flocks was 
body weight (17). However, weights can 
be compared only if the birds are they acquire represent, or otherwise pro- 

vide, an important scarce resource (6). 
Male American jacanas (Jacana spinosa) 

TOSHIO ASAKURA 
Departments of Pediatrics and 
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University of Pennsylvania, 

weighed at the same time of year since 
there is considerable seasonal variation 
in body weight (10). In January 1979 and 
February 1980, 62 and 52 percent, re- 
spectively, of the females in the study 
population were weighed. The weights of 

perform all of the postlaying parental 
care, and females that are successful in 
competition gain exclusive access to 
more than one male. They thus create a 
scarcity of males so that unsuccessful 
females sometimes fail to gain any male 
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