
increase in SCE frequency at  average 
levels of exposure that are low in com- 
parison with the current OSHA standard 
of 50 ppm. With the breathing zone data 
gathered in this study, it may be possible 
to determine whether the observed in- 
crease in SCE's arises exclusively from 
the cumulative effect of daily exposure 
or whether some component of the in- 
crease results from the rate at  which that 
exposure occurs. Comparison of mean 
numbers of SCE's  induced per cell per 
unit of cumulative exposure with those 
reported in a recent animal study (6) 
indicates that humans may be considera- 
bly more sensitive to SCE induction than 
animals. 

This difference would be much less, 
however, if SCE induction were also a 
function of dose rate, since the workers 
were exposed to ETO for short periods 
at five times the dose rate to which the 
animals were exposed. An effect of dose 
rate has been shown for ETO in other 
animal studies (12). If a dose rate effect is 
found for humans as  well, then the evi- 
dence of ETO-induced SCE's may sug- 
gest that occupational exposure to ETO 
and other alkylating agents be controlled 
in terms of both cumulative dose and 
dose rate. 
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In vivo Phosphorus-31 Nuclear Magnetic Resonance Reveals 
Lowered ATP During Heat Shock of Tetrahymena 

Abstract. Cells synthesize a characteristic set ojproteins-heat shock proteins-in 
response to  a rapid temperature jump or certain other stress treatments. The 
technique of phosphorus-31 nuclear magnetic resonance spectroscopy was used to 
examine in vivo the effects of temperature jump on two species ofTetrahymena that 
initiate the heat shock response at different temperatures. An  immediate 50 percent 
decrease in cellular adenosine triphosphate was observed when either species was 
jumped to a temperature that strongly induces synthesis of heat shock proteins. This 
new adenosine triphosphate concentration was maintained at the heat shock tem- 
perature. 

Cells respond in a common manner to 
a rapid temperature jump. This heat 
shock response involves the immediate 
transcriptional activation of a small set 
of previously quiescent genes, the tran- 
scripts of which are then preferentially 
translated into a characteristic set of 
proteins, the heat shock proteins. Con- 
versely, both transcription and transla- 
tion of most non-heat shock genes and 
transcripts are greatly reduced at the 
elevated temperature (1). The synthesis 
of these heat shock proteins, especially a 
class with a molecular weight of approxi- 
mately 70,000, has been strongly con- 
served during evolution, and their pres- 
ence is diagnostic of the response. In 
addition to  temperature jump, these pro- 
teins are synthesized by cells in response 
to a variety of other stresses, including 
treatment with respiratory inhibitors, 
amino acid analogs, release from anoxia, 
and, in the case of Tetrahymena, decilia- 
tion (1, 2). The functions of this general 
cellular response to stress and of the 
induced proteins are not known, but 
their uniform occurrence in diverse orga- 
nisms suggests that they play a funda- 
mental role in cellular homeostasis. 

The physiological signals mediating 

the heat shock response are unknown. 
However, because many inhibitors of 
oxidative phosphorylation or electron 
transport also induce synthesis of heat 
shock proteins, it has been suggested 
that cellular adenosine triphosphate 
(ATP) may be involved in the response 
(3). We used 31P nuclear magnetic reso- 
nance (NMR) spectroscopy to examine 
in vivo the effects of temperature jump 
on the ciliated protozoan Tetrahymena. 
We compared two species of Tetrahyme- 
na in which the response is induced by 
different temperatures. 

Cells in logarithmic growth were con- 
centrated by centrifugation, washed, and 
resuspended at  h ~ g h  density. The 3[P  
NMR spectra of the cells maintained at a 
standard temperature were collected, 
and the cells were then subjected to a 
temperature jump and further spectra 
were obtained. Portions were removed at 
both temperatures, and protein synthesis 
was monitored in vivo by incubating the 
cells in the presence of tritiated amino 
acids at  either temperature. The 3 ~ - l a -  
beled proteins were then identified by gel 
electrophoresis and fluorography (4). 

Upon subjecting either species to the 
higher temperature, where heat shock 



proteins are synthesized, we observed 
an immediate 50 percent decrease in 
cellular ATP concentration. As shown in 
Fig. lA,  jumping suspensions of T. ther- 
mophila from 30" to 40°C induced syn- 
thesis of the heat shock proteins. The 
NMR spectra recorded simultaneously 
from a sample of the same cells showed a 
decrease in intracellular ATP from 
3.3 ? 0.3 mM to 1.6 ? 0.6 mM (N = 9) 
at the higher temperature (Fig. 1A). No 
change in cell viability was observed 
after heat shock. 

A similar experiment was conducted 
with T. pyriformis, in which the heat 
shock response is induced by a tempera- 
ture jump from 28" to 33°C. As seen in 
Fig. IB, this temperature jump induced 
synthesis of the heat shock proteins and 
was also accompanied by a 50 percent 
decrease in ATP concentration. These 
similar decreases in cellular ATP were 
observed at 33" or 40°C in the two spe- 
cies, suggesting that this change in ATP 

concentration is not simply a function of 
temperature but represents a fundamen- 
tal aspect of the cellular response to heat 
stress. 

The change in ATP was detected with- 
in 3 minutes after raising the tempera- 
ture, which is near the limit of time 
resolution in our NMR experiment. Af- 
ter this initial decrease, ATP did not 
continue to decline during prolonged ex- 
posure to the elevated temperature but 
stabilized at a new steady-state level. 
However, this new level depended on 
the severity of the heat shock. When T. 
thermpphila was jumped to 37°C instead 
of 40°C, only a 25 percent decline in ATP 
was observed and heat shock protein 
synthesis was less intense than at 40"C, 
as determined by inspection of gel fluo- 
rograms. 

The possibility that ATP concentra- 
tions change after heat shock has been 
considered previously, since it has been 
known for some time that many inhibi- 

tors of respiration also induce the re- 
sponse. However, attempts to correlate 
these treatments with ATP levels in cell 
lysates of Drosophila salivary glands re- 
sulted in conflicting measurements (1,3).  
Interestingly, a decrease in cellular ATP 
was noted in Tetrahymena lysates after 
the cells were subjected to a series of 
heat treatments, traditionally used as a 
method of synchronization (5). In all 
these instances, however, ATP levels 
were determined with cell lysates, and 
the possibility of hydrolysis of ATP dur- 
ing preparation cannot be excluded (6). 
This possibility is eliminated in our reso- 
lution of cellular ATP levels in vivo. 

No accompanying increases in adeno- 
sine diphosphate (ADP) or adenosine 
monophosphate (AMP) were observed 
along with the decrease in ATP. If ATP 
were hydrolyzed to ADP, we would ob- 
serve no change in the peak at - 10 ppm, 
which is composed of resonances from 
the a phosphates of ADP and ATP. 

Fig. 1. Protein synthesis and 3 1 ~  NMR spectra in control and heat-shocked Tetrahymena. (A) Fluorogram of sodium dodecyl sulfate (SDS) gel 
showing proteins synthesized and jlP NMR spectra of T. thermophila immediately before (30°C) and after (40°C) heat shock treatment. Portions 
of cell samples used to obtain NMR spectra were labeled in the presence of 'H-labeled amino acids, and whole cell protein was extracted and ana- 
lyzed on SDS acrylamide gels. Labeled proteins were visualized by fluorography. Note the appearance of characteristic heat shock proteins with 
molecular weights of 91,000, 80,000, 73,000. 60,000, 45,000, and 28,000 and the decline in synthesis of other proteins at 40°C. The 31P NMR 
spectra represent approximately 30 minutes of accumulation (1200 free induction decays each). Note the decline in ATP, in this case from 3.6 mM 
before shock to 1.3 mM after shock. Because of the high level of external phosphate (P,CX) in this sample (4 mM), the intracellularpH was not ac- 
curately determined. (B) Fluorogram and 31P NMR spectra of T. pyriformis immediately before (28°C) and after (33°C) heat shock treatment. 
Note again the appearance of heat shock proteins at molecular weights of 91,000, 75,000, 70,000, 45,000, and 28,000. Differences in molecular 
weights of the heat shock proteins are consistently observed between the two species (11). As in (A), 31P NMR spectra show a decline of cellular 
ATP from 3.4 to 1.6 mM. In this sample the intracellular phosphate (P,"') resonance is clearly resolved at 28°C but shifts upfield after heat shock, 
indicating intracellular acidification. Abbreviations: SP, sugar phosphates; PA; phosphoarginine; a, $, y, primary, middle, and terminal 
phosphates of ATP, respectively. (The a and $ resonances of ADP phosphates coresonate with a and y phosphates of ATP, respectively.) 
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Figure 1, A and B,  clearly shows a 
decrease in the intensity of this peak, 
indicating that no significant increases in 
ADP occurred. If present, AMP can gen- 
erally be well resolved at  around +4  
ppm, yet no major resonance was detect- 
ed in this range. Concomitant with the 
loss of ATP, there was a dramatic in- 
crease in the intensity of the inorganic 
phosphate (P,) peak, indicating that ATP 
was hydrolyzed and not simply seques- 
tered or precipitated (7). These observa- 
tions suggest that ATP is hydrolyzed to 
the free nucleoside, which is not ob- 
served by 3 ' ~  NMR. 

Intracellular pH was also observed to 
collapse after heat shock (Fig. 1). The 
pH decreased less rapidly than the ATP 
concentration and reached its final value 
over a period of approximately 10 min- 
utes. At an external pH of 6 .2 ,  the intra- 
cellular pH,  which is usually about 7.2,  
shifted to  approximately 6 . 7  upon heat 
shock ( N  = 3). When the external pH 
was adjusted to  7.2,  the intra- and extra- 
cellular phosphate peaks coincided at 
+2.7  ppm. If there were intracellular 
acidification after heat shock and no 
decrease in internal Pi,  we would expect 
to observe the appearance of an upfield 
resonance (at about +2.1 ppm). This did 
not occur, indicating that the intracellu- 
lar medium was not acidified by more 
than 0.2 pH unit upon heat shock at the 
higher external pH. These results sug- 
gest that upon heat shock and loss of 
cellular ATP, cells become less able to 
maintain an alkaline pH gradient. They 
also suggest that lowered intracellular 
pH is not a condition for the heat shock 
response. 

These observations indicate that the 
changes in cellular physiology associated 
with heat shock are more dramatic than 
was previously realized. We detected 
significant decreases in the steady-state 
levels of cellular ATP within 3 minutes 
after heat shock, which are well correlat- 
ed with the existence and extent of heat 
shock protein synthesis. Like the tran- 
scriptional activation of the heat shock 
genes, these changes occur essentially 
immediately upon initiation of heat 
shock. It will be of interest to  determine 
whether these changes in ATP are in- 
volved in triggering the general cellular 
response to heat shock. 
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Cells by Epstein-Barr Virus 

Abstract. Primary cultures of epithelial cells were grown from the tonsils and 
adenoids of patients with diseases not related to Epstein-Burr virus. The cells could 
not be infected by Epstein-Burr virus. Fluorescein-labeled Epstein-Burr virus and a 
cytoJluorograph were then used to show that the epithelial cells do not have 
detectable receptors for the virus. However, implantation with Epstein-Burr virus 
receptors gave the cells the ability to bind the labeled virus. One to 5 percent of 
receptor-implanted cells exposed to the transforming B95-8 substrain of the virus 
expressed Epstein-Burr nuclear antigen. The early and viral capsid Epstein-Burr 
virus-determined antigens were not detected in the virus-infected cultures. The 
results show that normal human epithelial cells from the nasopharynx become 
susceptible to infection by Epstein-Burr virus when the membrane barrier resulting 
from the lack of viral receptors is overcome by receptor implantation. 

Nasopharyngeal carcinoma occurs 
mainly among Cantonese Chinese, Alas- 
kan natives, and in people in some re- 
gions of northern and equatorial Africa. 
The disease is common among adults 
and can occur in children and adoles- 
cents as  well (1). The undifferentiated 
histophathologic type of nasopharyngeal 
carcinoma is consistently associated 

with Epstein-Barr virus (EBV), a lym- 
photropic human herpesvirus that causes 
infectious mononucleosis and is impli- 
cated in the genesis of Burkitt's lympho- 
ma (2). Epstein-Barr virus DNA and 
Epstein-Barr nuclear antigen (EBNA) 
can be demonstrated in biopsy speci- 
mens of nasopharyngeal carcinoma (3). 
Epithelial cells, but not the lymphocytes 
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