
longer stimulus durations was unexpect- 
ed but not unprecedented. The explana- 
tion offered for this type of increase with 
duration of visual and auditory stimuli 
assumes that the longer durations " .  . . 
lengthen reaction time rather than make 
it faster by providing the subject with an 
opportunity to  take a longer sample of 
sensory information than is necessary 
. . ." (18). This explanation seems ap- 
propriate for our taste data (Fig. 1) and is 
supported by the increase in judged in- 
tensity with longer pulses (Table 2). 
Since the latency of the peripheral neural 
response cannot be posited as a possible 
reason for the increases in reaction time, 
the concept of greater information at  the 
longer durations fits both the intensity 
judgment and the reaction time observa- 
tions. However, since a high sensitivity 
to changes over time in the concentra- 
tion of gustatory stimuli has been ob- 
served (17, 19), with maximum sensitiv- 
ity at 5 1 Hz  (19), the long reaction 
times to our 1000-msec pulses may be 
related to the separation between ON and 
OFF with such pulses 

The data demonstrate a substantial 
human capacity not only to  respond to, 
but also to receive qualitative and quan- 
titative information from relatively brief 
taste pulses. The generality of these data 
is limited by our use of only single, 
relatively high, concentrations of two 
substances (10, 11). Nonetheless, it 
seems that the long human taste reaction 
times are not caused by a requirement 
for stimulus durations almost as long, 
and the initial phasic portion of the hu- 
man peripheral gustatory neural re- 
sponse is likely to contain appreciable, 
but far from complete, information on 
the stimulus. 
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A Benzodiazepine Receptor Antagonist Decreases Sleep and 

Reverses the Hypnotic Actions of Flurazepam 

Abstract. The benzodiazepine receptor antagonist 3-hydroxymethyl-P-carboline, 
which blocks several of the pharmacological actions of benzodiazepines, induces a 
dose-dependent increase in sleep latency in the rat. Furthermore, at a 1 0 ~ 1  dose that 
by itselfdoes not affect sleep, 3-hydroxymethyl-P-carboline blocks sleep induction by 
a large dose offlurazepam. The benzodiazepine receptor may play a role in both the 
physiological regulation and pharmacological induction of sleep. 

Benzodiazepines are widely used in States (I) .  The excellent correlations be- 
the treatment of insomnia, anxiety, sei- tween the affinity of a series of benzodia- 
zures, and muscle disorders. In recent zepines for specific receptor sites in the 
years a single benzodiazepine, fluraze- mammalian central nervous system and 
Pam, has accounted for about half of all the potency of these compounds as anx- 
hypnotic prescriptions in the United iolytics, anticonvulsants, and muscle re- 

Fig. 1 .  (A) Effects of 3-HMC 
on sleep latency. The rats 

A were administered 3-HMC at 
0900 hours, and 5 minutes lat- 
er EEG recordings were made 
for 2 hours. Overall signifi- 
cance by ANOVA was P < 
,00001. (B) Effects of 3-HMC 

'9 on the hypnotic actions offlur- 
a 12  - azepam The rats were admin- 

istered vehicle or 3-HMC (7.5 
mglkg) 5 minutes before re- 

8 - ceiving vehicle or flurazepam 
(40 mgikg). EEG recordings 
were performed for 2 hours 

4; after the last injection, begin- 
Or ' ning at 0905. Overall signifi- 

V 7.5 15 3 0  5 0  
3-HMC (mg/kg)  

3-HMC 3-HMC cance by ANOVA: P < ,003. 
+ V  + + + Abbreviations: V, vehicle; F, 

flurazepam 
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Table 1. Effects of 3-HMC, alone and in combination with flurazepam. on sleep in rats. The animals were injected with vehicle or 3-HMC (7.5 mgi 
kg) 5 minutes before the administration of vehicle or flurazepam (40 mgikg). EEG was recorded for 2 hours after the last injection. Values are min- 
utes (means t standard errors). N.S., not significant. 

Treatment N Sleep latency Non-REM REM sleep Total sleep Intermittent 
sleep wakefulness 

Vehicle and vehicle 10 17.8 i 2.9 69.2 t 4.0 2.2 t 0.9 71.4 + 3.9 30.8 t 4.4 
Vehicle and flurazepam 9 6.6 r 1.6 79+6 t 4.5 0.5 2 0.2 80.1 r 4.4 33.2 r 3.9 
3-HMC and vehicle 9 20.4 2 2.3 61.9 * 3.7 4.5 r 1.3 66.4 t 4.1 33.1 2 3.3 
3-HMC and flurazepam 9 17.3 i. 3.0 61.8 r 4.7 0.3 0.2 62.1 r 4.8 40.6 ? 7.1 

Significance* P < .003 P < .02 P < ,004 P < .04 N.S. 

*Analysis of variance. 

laxants suggest that the receptors medi- 
ate these actions (2). A similar relation 
between the benzodiazepine receptor 
and the sedative and hypnotic properties 
of benzodiazepines has not been as firm- 
ly established. 

Since certain P-carboiines substituted 
at C-3 have a high affinity for benzodi- 
azepine receptors (3) and can antagonize 
some of the pharmacological actions of 
benzodiazepines (4-6), such compounds 
could be useful in assessing the role of 
these receptors in the sleep-inducing 
properties of benzodiazepines such as 
flu raze pan^. We now report that in rats 
the benzodiazepine receptor antagonist 
3-hydroxymethyl-6-carboline (3-HMC) 
( 4 4 ,  at a dose that has no intrinsic 
effect on sleep, reverses the sleep-induc- 
ing actions of flurazepam. Furthermore, 
at slightly higher doses, 3-HMC induces 
a state of wakefulness that is not accom- 
panied by significant alterations in motor 
activity. These observations suggest that 
benzodiazepine receptors are involved 
not only in the sleep-inducing properties 
of benzodiazepines but also function in 
the physiological regulation of sleep. 

Male Sprague-Dawley rats (250 to 300 
g; Zivic-Miller) were maintained on a 
photoperiodic cycle with 12 hours of 
light (0800 to 2000 hours). Stainless steel 
screw electrodes were implanted in the 
dura for measurement of the electroen- 
cephalogram (EEG) and stainless steel 
wire electrodes were implanted in the 
nuchal musculature for measurement of 
the electromyogram (EMG). One week 
after surgery the rats were injected intra- 
peritoneally with 3-HMC (7.5 to 50 mgl 
kg) or vehicle at 0900 hours and 5 min- 
utes later with flurazepam (40 mgtkg) or 
vehicle. Two-hour recordings of EEG 
and EMG were performed on a Grass 
model 78 polygraph calibrated to 50 FV 
per 10 mm and with a paper speed of 10 
mmlsec. One "blind" investigator then 
read all the records, determining the 
state of consciousness for each 30-sec- 
ond epoch (7). The waking state is char- 
acterized by a low-amplitude, mixed- 
frequency EEG in the presence of high 
muscle tone. Sleep without rapid eye 

movement (non-REM) shows high-am- 
plitude, slower EEG, while REhl sleep is 
recognized by low-amplitude, mixed-fre- 
quency EEG and atony in the EMG. 
Statistical significance was determined 
by a one-way analysis of variance (AN- 
OVA) for independent groups. Differ- 
ences between groups were determined 
by a least significant difference test when 
a significant drug effect was identified by 
ANOVA. 

Flurazepam produced a characteristic 
reduction in the time lag from injection 
to sleep onset (sleep latency) and an 
increase in the duration of both non- 
REM and total sleep (Fig. IB). The flura- 
zepam did not elicit a significant change 
in REM sleep. A dose of 3-HMC (7.5 mgl 
kg) that has no intrinsic effect on sleep 
latency blocked the sleep-inducing effect 
of flurazepam, qince latency values for 
animals given both drugs were not signif- 
icantly different from control values (Ta- 
ble 1). 

At slightly higher doses, 3-HMC elicit- 
ed a dose-dependent increase in sleep 
latency (P < .00001) (Fig. 1 A). A signifi- 
cant (P < ,00001) decrease in total sleep 
time was due to a marked reduction in 
non-REM sleep (P < .0001). Effects on 
REM sleep were minor and inconsistent, 
although there was little REM even in 
the control group, presumably because 
the 2-hour recordings were done at a 
time of day when REM is minimal (8- 
10). 

To ascertain whether the decreases in 
non-REM sleep were accompanied by 
significant changes in motor activity (as 
is observed with other stimulant drugs), 
rats were administered 3-HMC (50 mgi 
kg, intraperitoneally) and observed for 3 
hours in a Motron Produkter device, 
which measures spontaneous locomotor 
activity. During the first 10 minutes there 
was a small decrease In motor activity 
followed by a modest, but transient, in- 
crease 20 to 70 minutes after injection 
(Fig. 2). ,4n ANOVA did not reveal a 
significant drug effect, but a significant 
drug x time interaction ( P  < ,031 was 
observed. However, the enhanced wake- 
fulness observed in 3-HMC-treated rats 
was most evident during the first 10 
minutes after injection, when this group 
had less motor activity than the vehicle- 
treated rats (11). 

Cowen et al. (5) reported that 3-carbo- 
methoxy-p-carboline (0-CCE) (5 mgikg, 
intravenously) produces a transient re- 
versal of flurazepam-induced decreases 
in motor activity. Similarly, OakIey and 
Jones (5 )  noted that the doses of p-CCE 
(50 to 100 mgikg, intraperitoneally) nec- 
essary to antagonize the anticonvulsant 
actions of diazepam are far greater than 
might be predicted from the affinity of 
this compound for benzodiazepine re- 
ceptors in vitro [inhibition constant (K,), 
- I nMl. These observations suggest 
that the relatively transient action of p- 
CCE in rats IS due to rapld metabolism of 

- 3-HMC ' 120 1 *-- Vehicle * 
Fig. 2. Effects of 3-HMC on 5 
motor activity. The rats were 5 go . 
administered 3-HMC (50 mg/ 
kg), and motor activity was r 
measured in a Motron Pro- .-> 
dukter apparatus. Analysis of 5 60 - T 

variance revealed no over- j> 

all drug effect, but a signifi- 

(P < .03). 
cant drug x time interaction 

Minutes 
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the compound to inactive p-carboline-3- 
carboxylic acid (K,, - 25,000 nM). This 
has been confirmed in our laboratories, 
and has stimulated the development of 
substantially longer lived, pharmacologi- 
cally active p-carboline derivatives (12). 

We have demonstrated that 3 - H M C ,  

which antagonizes the anxiolytic and 
anticonvulsant actions of diazepam, also 
antagonizes the sleep-inducing proper- 
ties of the benzodiazepine flurazepam. 
Thus the hypnotic actions of flurazepam 
may be mediated through interaction 
with the benzodiazepine receptor. At 
slightly higher doses, 3-HMC increased 
wakefulness by significantly increasing 
sleep latency and reducing non-REM 
(but not REM) sleep (Fig. 1A and Table 
1). Thus 3-HMC is not merely a benzodi- 
azepine antagonist but exerts a pharma- 
cological action on sleep opposite that 
produced by benzodiazepines (13). Al- 
though other drugs (such as  amphet- 
amines and methylxanthines) can reduce 
sleep (14), they also invariably cause 
profound alterations in behavior and mo- 
tor activity (15). Compounds that reduce 
sleep without eliciting major changes in 
motor activity may, therefore, be more 
properly termed "somnolytics." The 
suggestion that benzodiazepine recep- 
tors (and, by implication, the endoge- 
nous substrates that subserve these re- 
ceptors) are involved in both physiologi- 
cal and pharmacologically induced sleep 
could lead to the development of (3- 
carbolines o r  related compounds for 
treating human sleep disorders, especial- 
ly those characterized by excessive som- 
nolence. 
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Nigral Transplants Reinnervating the Dopamine-Depleted 

Neostriatum Can Sustain Intracranial Self-Stimulation 

Abstract. Transplants of embryonic substantia nigra reinnervated the striatum and 
were able to sustain intracranial self-stimulation in rats with brain lesions induced by 
6-hydroxydopamine. Dopaminergic drugs and alterations in current intensity pro- 
duced typical changes in response rates. Animals with electrodes implanted into 
cortical grafts or into the denervated striatum failed to exhibit self-stimulation. 
TheseJindings suggest that transplanted dopamine neurons convey specijic, tempo- 
rally organized information axonally to the striatum. 

A procedure for transplanting dopa- 
mine (DA) cells from the substantia nigrn 
to ectopic cortical sites was recently 
described (1). Such grafts can reinner- 
vate the host brain extensively and ame- 
liorate several behavioral deficits pro- 
duced by 6-hydroxydopamine (6-0HDA)- 
induced depletions of DA in the host, 
including spontaneous and drug-induced 
rotation, sensorimotor impairments, and 
akinesia (1, 2). However, it is not clear 
whether transplanted neurons simply 
provide a tonic release of DA into the 
striatum or whether the grafts release 
DA from their terminals on activation of 
the cell bodies. The phenomenon of in- 
tracranial self-stimulation (ICSS) (3) may 
provide a useful means for investigating 
this question, since (i) DA systems of the 
brain have been implicated in ICSS (4), 

(ii) there is a requirement that the animal 
integrate a specific input with its behav- 
ior, and (iii) brain stimulation can pro- 
vide such an input to the DA cell bodies 
in the graft. We report here that DA-rich 
nigral grafts can sustain self-stimulation, 
This suggests that transplanted DA neu- 
rons may indeed transmit specific infor- 
mation to the reinnervated striatum. 

The right nigrostriatal pathway in 20 
young adult female rats of the Sprague- 
Dawley strain was lesioned with 6- 
OHDA, and cavities were made through 
the right parietal cortex and corpus callo- 
sum, exposing the dorsal surface of the 
caudate-putamen. Three weeks later 
grafts of embryonic substantia nigra 
( N  = 14) or embryonic isotopic cortex 
(N = 6) were placed into the cavities (5). 
After 4 months bipolar stimulating elec- 
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