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Taste Flashes: Reaction Times, Intensity, and Quality 

Abstract. Human simple reaction times and magnitude estimates of taste intensity 
increased as the duration of 500-millimolar sodium chloride or 2-millimolar saccha- 
rin sodium pulses lengthenedfiom 100 to 1000 milliseconds. Responses to "What 
was the taste?" ranged from 94 to 100 percent "sweet" for saccharin and 68 to 83 
percent "salty" for salt across all pulse durations when both substances were 
randomized with water pulses. 

We can see much from the light pro- 
vided during a flash of forked lightning 
(I),  and we can hear an identifiable 
sound when a twig snaps or when some- 
one gasps. These sensory stimuli, all of 
which are shorter than 1 second ( 2 ) ,  end 
long before a human gross motor re- 
sponse to  them occurs (3). We are thus 
generally able to  detect and identify tran- 
sient stimuli and unable to  respond dur- 
ing or within a few hundred milliseconds 
of such transients. 

What types of responses d o  humans 
make to taste stimuli that end before a 
motor response can be made? We have 
found that useful taste information is 
provided by 100-msec gustatory tran- 
sients, that additional information is ob- 
tained during taste stimuli of longer dura- 
tion, and that lengthy central nervous 
system processing of gustatory input 
precedes any behavioral response. 

We measured, in volunteer partici- 
pants (4), reaction times to simple tastes 
(Fig. 1) and judgments of taste quality 
(Table 1) and intensity (5) (Table 2) to  
single pulses of 500 mM NaCl (American 

Chemical Society) or 2 mM saccharin 
sodium (National Formulary) in distilled 
water (the experimental stimuli), or of 
distilled water alone (the control stimu- 
lus) (6 ) .  Pulse durations were 100, 200, 
300, and 1000 msec, each presented four 
times per session in random order, with a 
10-second distilled water flow before a 
pulse and a 5-second flow after (7). Each 
measurement session began with two 
practice identified stimulus and control 
trials. Three or more practice sessions 
preceded a series of data collection ses- 
sions for each type of measurement. 
Eight control stimuli and eight or more 
experimental stimuli were given during 
each session, with at least 60 seconds 
between stimuli. Both simple reaction 
times (Fig. 1) and judged stimulus inten- 
sity (Table 2) increased with pulse dura- 
tion. In contrast, no statistically signifi- 
cant change in the taste quality of NaCl 
or saccharin occurred with change in 
stimulus duration (Table 1) (8).  

Errors on experimental stimulus trials, 
that is, failure to  notice a change in taste, 
did not exceed 4 percent across all par- 

Table 1. Taste quality responses as percentages of total response. 

Stimulus pulse duration (msec) 

Quality NaCl Saccharin 
- -- 

100 200 300 1000 100 200 300 1000 

Salty 68 70 70 83 3 0 0 0 
Sweet 0 0 3 0 94 98 . 100 97 
Bitter 13 17 7 7 0 0 0 0 
Salty-sour 3 3 10 3 0 0 0 0 
Sour 7 0 3 7 0 0 0 0 
No changet 3 0 0 0 3 2 0 0 
Cinnamon 0 0 0 0 0 0 0 3 
Sweet-sour 0 3 0 0 0 0 0 0 
Salty-bitter 3 3 7 0 0 0 0 0 
Sour-bitter 0 4 0 0 0 0 0 0 
Sweet-bitter 3 0 0 0 0 0 0 0 

-- 
?Experimental stimulus trial error. Such trials were repeated immediately after the next scheduled control 
stimulus trial in the predetermined random order. 
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Table 2. Magnitude estimates (median 2 standard error) of the intensity of stimulus pulses of NaCl or saccharin. A 2-second stimulus pulse was 
assigned a modulus (5) of 20 and used as a standard against which subjects would judge in proportion the intensity of the experimental stimulus. 
The standard was presented twice before the data collection trials began and then after every five trials during the session. Participants served in 
each of five separate data collection sessions for NaCl and for saccharin. Intensities of all possible pairings of NaCl pulses were significantly 
different (Wilcoxon matched-pairs signed-ranks test), except for pairs 100-300 and 200-300 msec, at both measurement times. For saccharin, all 
pairs were different except 100-300, 100-200, and 200-300 msec. 

pp-p--p. 

Stimulus pulse duration (msec) 

Time NaCl Sodium saccharin 
- 

100 200 300 1000 100 200 300 1000 

Last 100 msec of pulse 1 1  t 0.1 14 t- 0.7 12 t 0.9 18 t 1.0 8 t 1.8 12.5 +. 1.5 10.5 r 1.2 1.6 t 1.4 
5 seconds after pulse 3 + .  1.2 5 t- 0.9 4.5 r 0.9 7 t 1 . 4  3 + 0 . 9  3 r 1.2 3 t 0.9 6 + 1.2 

ticipants for any NaCl pulse duration or 
type of response, whereas errors were 
below 10 percent for the three longer 
saccharin stimulus durations. For  the 
100-msec saccharin pulses, failures to 
report a change in the taste quality were 
rare (3 percent) in quality judgment ses- 
sions, but failures to report a change in 
taste intensity (14 percent) and to re- 
spond on reaction time trials (20 percent) 
were more frequent. Since relatively 
high experimental stimulus concentra- 
tions were selected to facilitate detect- 
ability, the error rates for the 100-msec 
saccharin pulses suggest decreased sen- 
sory information at  this brief duration. 
On control stimulus (water) trials, no 
error rates exceeded 10 percent for any 
type of measurement session or pulse 
duration (9). 

In agreement with previous studies, 
the simple taste reaction times were all 
more than 400 msec long (4, 10, 11) and 
were longer for saccharin than for NaCl 
(10). N o  liquid taste stimuli with dura- 
tions below reaction times have previ- 
ously been used with human judgments 
of the intensity and quality of the stimuli. 
Consequently, the tripartite observation 
that 100-msec pulses (i) permit reaction 
times of "normal" speed and variability, 
(ii) lead to quality categorizations com- 
parable to those for long pulses, and (iii) 
elicit consistent judgments of intensity, 
is important. It  indicates that the sensory 
response to this brief gustatory pulse, 
which in the primary nerves reaching the 
tongue's taste receptors may be only a 
phasic transient (12), contains consider- 
able information. In addition, it confirms 
previous suggestions that only a small 
part of human taste reaction time (11) is 
attributable to a necessary input (4) or 
action time (13). Latency of gustatory 
neural responses is in general somewhat 
longer than that for visual or auditory 
responses in vertebrates, but only by 10 
to 25 msec (12). Human gustatory neural 
response latencies are not known, but 
rise times of human peripheral gustatory 
neural responses are comparable to 
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those of other mammals (14). Conse- 
quently, it may be that much of the 200- 
msec (or longer) difference between sim- 
ple auditory or visual reaction time and 
simple taste reaction time is due to long- 
er central nervous system processing of 
the sensory input. The apparent longer 
processing may indicate the complexity 
of the judgment. However, some part of 
the time difference may be a delay nor- 
mally related to movement of the tongue. 

Previous investigations using gustato- 
ry stimulus durations of 700 msec or 
longer found that judged taste intensity 
increased with duration (15). Our data 
show this trend for stimulus durations 
several hundred milliseconds below the 
gustatory reaction time range. Similarly, 

a direct relationship between stilnulus 
duration and judged intensity occurs in 
vision (16). In general, this observation 
demonstrates that, over some range, an 
increase in the duration of sensory stim- 
ulation increases the information avail- 
able to  and used by the organism. For  
taste in particular, one implication is that 
not all information for intensity is pro- 
vided by the phasic portion of the senso- 
ry neural response. Judged intensity al- 
most doubled when the gustatory pulse 
was lengthened from 100 to 1000 msec 
(Table 2). Thus, brief taste pulses d o  not 
evoke responses comparable to those 
which would be produced in normal liq- 
uid ingestion (17). 

The increase in reaction time with 

S i x  p a r t i c i p a n t s  
F low r a t e :  10 m l l s e c  
M e d i a n  -t s t a n d a r d  e r r o r  of m e d i a n  

/ 
/ Fig. 1 .  Median (t- standard er- / 

ror) time from onset of a taste / 
/ 

stimulus (open circles, saccha- 
rin; filled circles, NaCI) to the 
report of any taste change. 
The connected arrows (down- 
ward for NaCI, upward for 
saccharin) identify statistical- 
ly significant (P < .05, two- 
tailed Wilcoxon matched-pairs 
signed-ranks test) differences 
between reaction times to 
each duration. The insert 
shows solution conductivity, 
measured on calibration trials 
with a flow-through conduc- 
tivity cell (4, 17) located 2.5 
mm past the end of the open- 
ing to the tongue chamber, be- 
fore, during, and after 100- 
msec experimental stimulus 
pulses of saccharin (A) or 
NaCl (B). Calibration in the 
inset, 100 msec. 

A 
o ?  I , -1 

0 200 800 1000 
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longer stimulus durations was unexpect- 
ed but not unprecedented. The explana- 
tion offered for this type of increase with 
duration of visual and auditory stimuli 
assumes that the longer durations " .  . . 
lengthen reaction time rather than make 
it faster by providing the subject with an 
opportunity to  take a longer sample of 
sensory information than is necessary 
. . ." (18). This explanation seems ap- 
propriate for our taste data (Fig. 1) and is 
supported by the increase in judged in- 
tensity with longer pulses (Table 2). 
Since the latency of the peripheral neural 
response cannot be posited as  a possible 
reason for the increases in reaction time, 
the concept of greater information at  the 
longer durations fits both the intensity 
judgment and the reaction time observa- 
tions. However, since a high sensitivity 
to changes over time in the concentra- 
tion of gustatory stimuli has been ob- 
served (17, 19), with maximum sensitiv- 
ity at 5 1 Hz  (19), the long reaction 
times to our 1000-msec pulses may be 
related to the separation between ON and 
OFF with such pulses. 

The data demonstrate a substantial 
human capacity not only to  respond to, 
but also to receive qualitative and quan- 
titative information from relatively brief 
taste pulses. The generality of these data 
is limited by our use of only single, 
relatively high, concentrations of two 
substances (10, 11). Nonetheless, it 
seems that the long human taste reaction 
times are not caused by a requirement 
for stimulus durations almost as  long, 
and the initial phasic portion of the hu- 
man peripheral gustatory neural re- 
sponse is likely to contain appreciable, 
but far from complete, information on 
the stimulus. 
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A Benzodiazepine Receptor Antagonist Decreases Sleep and 

Reverses the Hypnotic Actions of Flurazepam 

Abstract. The benzodiazepine receptor antagonist 3-hydroxymethyl-P-carboline, 
which blocks several of the pharmacological actions of benzodiazepines, induces a 
dose-dependent increase in sleep latency in the rat. Furthermore, at a 1 0 ~ 1  dose that 
by itselfdoes not affect sleep, 3-hydroxymethyl-P-carboline blocks sleep induction by 
a large dose offlurazepam. The benzodiazepine receptor may play a role in both the 
physiological regulation and pharmacological induction of sleep. 

Benzodiazepines are widely used in States (I) .  The excellent correlations be- 
the treatment of insomnia, anxiety, sei- tween the affinity of a series of benzodia- 
zures, and muscle disorders. In recent zepines for specific receptor sites in the 
years a single benzodiazepine, fluraze- mammalian central nervous system and 
Pam, has accounted for about half of all the potency of these compounds as anx- 
hypnotic prescriptions in the United iolytics, anticonvulsants, and muscle re- 

Fig. 1 .  (A) Effects of 3-HMC 
on sleep latency. The rats 

A were administered 3-HMC at 
0900 hours, and 5 minutes lat- 
er EEG recordings were made 
for 2 hours. Overall signifi- 
cance by ANOVA was P < 
,00001. (B) Effects of 3-HMC 

'9 on the hypnotic actions offlur- 
a 1 2  - azepam The rats were admin- 

istered vehicle or 3-HMC (7.5 
mglkg) 5 minutes before re- 

8 - ceiving vehicle or flurazepam 
(40 mglkg). EEG recordings 
were performed for 2 hours 

4; after the last injection, begin- 
Or ' ning at 0905. Overall signifi- 

V 7.5 15 3 0  5 0  
3-HMC (mg/kg)  

3-HMC 3-HMC cance by ANOVA: P < ,003. 
+ V  + + + Abbreviations: V, vehicle; F, 

flurazepam 
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