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Associative Conditioning of Single Sensory Neurons 
Suggests a Cellular Mechanism for Learning 

Abstract. A cellular analog of associative learning has been demonstrated in 
individual sensory neurons of the tail withdrawal reflex of Aplysia. Sensory cells 
activated by intracellular current injection shortly before a sensitizing shock to the 
animal's tail display significantly more facilitation of their monosynaptic connec- 
tions to a tail motor. neuron than cells trained either with intracellular stimulation 
unpaired to tail shock or with tail shock alone. This associative efect  is acquired 
rapidly and is expressed as a temporally specific amplification of heterosynaptic 
facilitation. The res~tlts suggest that activity-dependent neuromoclulation may be 
a mechanism ~tnderlying associative information storage and point to aspects 
of s~tbcellular processes that might be involved in the formation of nerlrai associa- 
tions. 

The use of intracellular techniques to 
investigate neuronal changes produced 
by classical and operant conditioning 
paradigms (I) encourages the belief that 
mechanisms of associative information 
storage can be analyzed on the cellular 
level. Because associative learning is 
usually quite sensitive to motivational 
and attentional factors, some psycholo- 
gists have assumed that the formation of 
associations depends, in part, upon the 
contiguous activation of sensory "ana- 
lyzers" and modulatory "arousal cen- 
ters" (2). We have tested this general 
idea on the neuronal level in the mollusk 
Aplysia californica by examining the as- 
sociative interaction of electrophysiolog- 
ical activity in individual sensory neu- 
rons with neuromodulatory concomi- 
tants of defensive arousal. Our results 

suggest a cellular mechanism for associa- 
tive information storage, activity-depen- 
dent neuromodulation, that may be of 
general significance. 

We applied a cellular analog of a dif- 
ferential classical conditioning proce- 
dure simultaneously to three mechanoaf- 
ferent neurons-which innervate the tail 
(3)-in the left pleural ganglion of each 
animal. Because noxious tail stimulation 
produces defensive arousal and modu- 
lates (heterosynaptically facilitates) (3, 
4) synaptic connections of these sensory 
neurons, we used tail shock as the rein- 
forcing or unconditioned stimulus (US) 
(5). Training and testing were conducted 
in a reduced "split-foot" preparation (6). 
Associative and nonassociative effects of 
training were measured by testing the 
amplitude of single monosynaptic excit- 
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atory postsynaptic potentials (EPSP's) Figure 2A (top) shows the pooled of the associative effect relative to  the 
evoked in a common postsynaptic tail 
motor neuron (3, ;? by brief intracellular 
stimulation of each sensory cell. These 
tests (8) were applied at  5-minute inter- 
vals before (pretest), during, and after 
(posttest) training. 

After the pretest phase, the sensory 
neurons were assigned (9) to one of three 
training procedures: paired (CS + ; 
N = lo), unpaired (CS-; N = lo), or 
sensitization (Sens; N = 9) (Fig. 1A). 
The paired and unpaired conditioned 
stimuli (CS+ and CS-) consisted of a 
brief suprathreshold train of nine depo- 
larizing current pulses injected through 
the intracellular electrode (10). This 
spike train mimicked the response of 
these sensory neurons to  moderate me- 
chanical stimulation of the skin (3). The 
cells receiving Sens training were ex- 
posed only to  the effects of the US.  Each 
trial began with delivery of the CS+ to 
the paired sensory neuron (Fig. 1A); 600 
msec later, the US was applied to  the 
tail; and after 2 minutes the CS- was 
applied to the unpaired sensory neuron 
After an additional 2 minutes (1 minute 
before the next trial), all three sensory 
neurons were tested with single depolar- 
izing pulses (8) to elicit EPSP's in the 
motor neuron. Five training trials were 
given (with four interpolated tests), fol- 
lowed by at  least six additional tests. 

Figure IA illustrates the neural con- 
comitants of each type of training, show- 
ing the sensory cell responses and the 
synaptic responses in the motor neuron 
to the C S + ,  CS-, and US.  In this ani- 
mal, CS+ produced more facilitation of 
the monosynaptic EPSP than did CS- or 
Sens training (Fig. 1 ,  B and C). 

EPSP amplitudes in each group (ten ani- 
mals and 29 cells) (11). A treatment-by- 
trials analysis of variance on the ten tests 
given during the training and posttest 
phases revealed overall significant ef- 
fects of both type of training and number 
of trials (F2,26 = 3.77, P < .05; F9,234 = 

27.64, P < .01). Subsequent pairwise 
comparisons at  two selected tests were 
performed with the Newman-Keuls pro- 
cedure. At test 5 (5 minutes after the last 
US) the C S +  cells showed significantly 
more synaptic facilitation than either the 
CS- or Sens cells ( P  < .05); there was 
no difference between the CS- and Sens 
cells. By contrast, at test 10 there were 
no significant differences among these 
groups. 

The U S  alone produces nonspecific 
heterosynaptic facilitation of the sensory 
neurons (Sens, Fig. 2A, top). It seemed 
likely that variability in the amount of 
nonspecific facilitation produced by the 
US in different animals partially ob- 
scured the associative effect specific to 
the pairing of spike activity with the US.  
For  example, on test 10 the mean EPSP 
amplitude of Sens cells in different ani- 
mals ranged from 60 percent to 166 per- 
cent of their mean pretest levels, and 
similar variability was seen in CS+ (89 to 
251 percent) and CS- (35 to 272 percent) 
EPSP's. Nevertheless, nine of ten ani- 
mals showed greater facilitation (or less 
depression) in CS+ cells than in CS- 
cells a t  test 10. To  reduce the effects of 
variability among different animals in 
nonspecific facilitation, we used the 
Sens cell in each animal as an index of 
the amount of nonspecific facilitation in 
that animal and estimated the magnitude 

nonspecific facilitation on each test. 
Thus, for each cell we normalized all 
EPSP's to the mean of the three baseline 
tests in the pretest phase. In ench animal 
( N  = 9), we then divided the normalized 
EPSP amplitudes of the CS+ and CS- 
cells on each test by the normalized Sens 
EPSP amplitude on that test to obtain 
C S +  and CS- facilitation ratios (Fig. 
2A, bottom). A facilitation ratio of 1 
indicates facilitation equal to that pro- 
duced by sensitization alone, whereas 
facilitation ratios greater than 1 indicate 
synaptic facilitation greater than expect- 
ed from sensitization alone. 

A treatment-by-trials analysis of vari- 
ance on the facilitation ratios of CS + and 
CS- cells in the training and posttest 
phases revealed overall significant ef- 
fects of type of training (F1,16 = 10.14, 
P < .01) but not of number of trials 
(F9,144 = 1.58). Subsequent Newman- 
Keuls tests revealed that CS t test re- 
sponses were significantly greater than 
CS- responses 5 minutes (test 5, 
P < .05) and 30 minutes after the last US 
(test 10, P < .01). In three of the ani- 
mals, the sensory cells were held for 
over 75 minutes, and in each case, the 
C S +  cell showed more facilitation than 
the CS- cell. Thus the associative effect 
appears to be long-lasting. In addition, 
the nearly constant value of the CS+ 
facilitation ratio throughout the training 
and posttest phases (Fig. 2A, bottom) 
suggests that the associative process 
produces a nearly constant amplification 
of the nonspecific synaptic facilitation 
from the US on each trial. 

The associative change is not due to a 
generalized change in the properties of 
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the postsynaptic cell since, in each ani- 
mal, a single motor neuron manifested 
simultaneously the alterations produced 
by each of the three cellular training 
protocols. Alternatively, the association 
may occur within the modulatory system 
mediating the heterosynaptic facilitation. 
This would require nonoverlapping mod- 
ulatory subsystems specific to  each sen- 
sory neuron, an unlikely arrangement 
since focal stimulation of points on the 
tail (activating few tail sensory neurons) 
causes heterosynaptic facilitation of all 
the tail sensory neurons (3). Another 
possibility is that the associative locus is 
the sensory neuron itself. Support for 
this possibility comes from recent find- 
ings of changes in membrane potential 
and input resistance of the sensory cell 
soma produced by pairing (12). 

These results suggest a cellular mecha- 
nism for storing associative information, 
namely, activity-dependent neuromodu- 
lation (Fig. 2B). We propose that a moti- 
vationally significant U S  causes the dif- 
fuse release (synaptic o r  humoral, or 
both) of substances that modulate the 
functional strength of various neurons. 
In the tail withdrawal reflex, this neuro- 
modulation is expressed as  heterosynap- 
tic facilitation-and apparently an in- 
crease in excitability (3, 12, 13)-of the 
sensory neurons. Associative specificity 
occurs because the degree of neuromod- 
ulation depends on the timing of prior 
electrophysiological activity in the mod- 
ulated cells, a dependence similar to  the 
permissive effect of spike activity postu- 
lated by Kandel and Tauc (14). Howev- 
er,  rather than acting permissively, spike 
activity immediately before a neuromod- 
ulatory signal from a US appears to 
cause a powerful amplification of the 
amplitude and duration of the modula- 
tory effects, an amplification that does 
not occur if the same change in activity is 
separated in time from the modulatory 
signal. 

Our proposed associative mechanism 
differs from many cellular models of as- 
sociative learning in not being dependent 
on the concurrent activation of pre- and 
postsynaptic elements at  particular syn- 
apses (15). One consequence is that this 
mechanism could be used flexibly for 
different associative effects in different 
neuronal systems. For  example, in a 
sensory system, this mechanism could 
allow an organism to learn to attend 
selectively to previously insignificant 
stimuli without necessarily linking these 
stimuli to particular responses. 

A subcellular mechanism for imple- 
menting the associative change is sug- 
gested by properties of mechanoafferent 

Training Posttest 

m cs+ 
0 CS- 
0 Sens 

neurons in Aplysia. The modulatory ef- 
fects of the US have been linked to the 
activity of adenosine 3',5'-monophos- 
phate (cyclic AMP) in Aplysia siphon 
sensory neurons (16), and evidence now 
suggests a similar role in the tail sensory 
neurons (12, 17). Indirect evidence sug- 
gests an elevation of Ca2+ levels in tail 
sensory cells produced by the CS (18). 
Therefore, a simple, testable hypothesis 
is that one major intracellular messenger 
(Ca2+) amplifies the effects of the other 
(cyclic AMP), perhaps through the acti- 

4 8 t t  

B'l B2 d3 i j 4f j 8 :O Fig. 2. Activity-dependent neu- 
romodulation. (A) (Top) Mean 

is further suggested by similar findings 
obtained independently in siphon senso- 
ry neurons of Aplysia (21) and by results 
consistent with activity-dependent and 
Ca2+-dependent neuromodulation in 
mammalian cortical and hippocampal 
cells (22). 
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B t 1 7 2 T 3 7 4 t 5 6 7 8 9 10 Sens facilitation. A facilitation 
Test  number ratio of 1 indicates facilitation 

equal to that expected from 
sensitization alone. The CS+ cells show temporally specific, activity-dependent amplification 
of US-evoked facilitation. (B) General model of activity-dependent neuromodulation. Stippling 
indicates temporally contiguous activity. A motivationally potent US both activates a neural 
output system and diffusely modulates (Mod) afferents to the output system. Increased spike 
activity in the CS+ afferent immediately before the modulatory signal amplifies the degree and 
duration of the modulatory effects, perhaps through the Ca2+ sensitivity of a US-evoked second 
messenger. In turn, by increasing transmitter release or excitability of the CS+ cell; or both 
(13), the amplified modulatory effects strengthen the functional connection between the CS+ 
cell and the output system. 
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Methyl 4,6-Dichloro-4,6-Dideoxy-a-D-Galactopyranoside: 
An Inhibitor of Sweet Taste Responses in Gerbils 

Abstract. The sugar methyl 4,6-dich/oro4,6-dideoxy-a-D-gulactopyrartoside 
(DiCl-gal) is a new type of inhibitor of the gerbil's electrophysiological taste 
response to sucrose or saccharin. Saturated solutions of this compound alone barely 
stimulate the gerbil's taste nerve. But, when mixed with sucrose or saccharin, DiCl- 
gal suppresses the gerbil's taste response to these two sweeteners. In contrast, when 
mixed with sodium chloride or hydroclzloric acid, DiCI-gal does not affect the taste 
responses to these compounds. However, unlike other inhibitors of sweet taste, the 
DiCl-gul taste suppression is short-lived and occurs only when the inhibitor is 
combined with the sweetener. 

My colleagues and I have been investi- 
gating the electrophysiological taste re- 
sponses of gerbils to sugars and artificial 
sweeteners (1-3), seeking inhibitors that 
would provide some insight into the 
mechanism of the sweet taste response. 
We discovered a new type of inhibitor 
when we were comparing the taste re- 
sponses to sucrose with those to tetra- 
chloro-galacto-sucrose (4,6-dichloro- 
4,6-dideoxy-a-D-galactopyranosyl 1,6- 
dichloro- 1 ,6-dideoxy-p-D-fructofurano- 
side). This chlorine-containing sucrose 

derivative is about 100 times as  effec- 
tive as sucrose in producing an electro- 
physiological response (2 ,  4). Therefore, 
in an attempt to produce a "super sweet- 
ener," we synthesized methyl 4,6-di- 
chloro - 4,6- dideoxy - ci-o - galactopyran- 
oside (DiC1-gal), a monosaccharide that 
contains chlorine atoms and also closely 
resembles the chlorinated sucrose deriv- 
ative. This sugar barely stimulated the 
gerbil's taste receptors even at a concen- 
tration of 0.1M, a saturated solution. In 
our earlier research, whenever we found 

Concentration (molar) Concentration 

Fig. 1. (A) A comparison of the mean integrated nerve responses to sweetener solutions with 
the responses to mixtures of the sweetener and DiC1-gal. The sucrose solutions were prepared 
with deionized water: a-e, sucrose (N = 5); a- - -a, mixture of sucrose and 0.1M DiC1- 
gal (N = 5). The H-saccharin solutions were prepared with O.1M potassium phosphate buffer, 
pH 7 : 0-0, H-saccharin (N = 4);  0- - -0, mixture of H-saccharin and 0.1M DiC1-gal 
(N = 4). The bars indicate t 2 standard errors. (B) A Beidler plot of integrated nerve responses 
to H-saccharin (a) and mixtures of H-saccharin and O.1M DiCl-gal (0); C represents 
concentration and R is response. 
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