cruing from it to the organisms is the
rapid removal of indigestible matter from
their feeding environment. The rapid
sinking out of all useless particulate mat-
ter eliminates the need to reprocess it
repeatedly, an activity that costs energy
but yields none. The packaging of use-
less matter into larger particles may rep-
resent a net saving. It appears that, with-
out this activity of the organisms, the
fine-particle concentrations in the sur-
face waters of the ocean would build up
to much higher levels.
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Woods Hole, Massachusetts 02543
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Lizard Tail Autotomy: Function and Energetics of

Postautotomy Tail Movement in Scincella lateralis

Abstract. Handling of autotomized, thrashing and autotomized, exhausted tails of
the lizard Scincella lateralis by mammals and snakes was tested to examine the
function of postautotomy tail movement. Tail movement attracted a mammal’s
attack to the tail, permitting the lizard to escape and increased the time required for
a snake to subdue a tail before swallowing it, increasing the lizard’s escape time by
40 percent. Lactate concentrations of autotomized tails after movement were
compared to those of intact tails after rest in S. lateralis, a species with a high rate of
autotomized tail thrashing, and Anolis carolinensis, a species with a low rate of
thrashing. Postautotomy movement increased tail lactate concentration in both
species, but mean tail lactate concentration in S. lateralis was 60 percent higher than
that in A. carolinensis, and a third higher than that reported for whole-body lactate
content of the very mobile lizard Dipsosaurus dorsalis.

Autotomy of body parts has evolved
independently in vertebrates (/, 2) and
invertebrates (3) as a predator defense in
which mechanical release of the struc-
ture facilitates escape (4). In general, an
autotomous structure is relatively simple
in morphology with few interacting vari-
ables and has an alternative biological
role, such as locomotion or feeding.
Thus, autotomy offers a simplified model
system for studying several important
topics of evolutionary biology—for ex-
ample, the costs of predator defense
mechanisms, apportionment of re-
sources to somatic versus reproductive
components, and the evolution of preda-
tor-prey interactions (5, 6). A postautot-
omy phenomenon characterized by an
extended period of muscle contraction in
the autotomized structure occurs in sev-
eral groups: decapods, arachnids (7), sal-
amanders (/), and lizards (8) are exam-
ples. The tail in some species of lizards
may thrash rapidly from side to side
immediately after autotomy (8). Al-
though postautotomy tail movement has
been of interest for nearly a century (9),
neither the function nor energetics in-
volved is clear (/0-12). We report ex-
perimental evidence indicating that post-
autotomy tail movement either distracts
predators from escaping lizards or in-
creases handling time of the released tail,
allowing more time for prey escape (or
both), and that such tail movement is
supported by anaerobic metabolism, the
capacity of which is greater in species
that use autotomy as a principal predator
escape tactic.

Lizards constitute an important di-
etary component of mammals (I3, 14)
and snakes (/5). Because the feeding
mechanics and behavior of these preda-
tors differ considerably (/4, 16), the ef-
fects of autotomized tail movement on
predator handling might vary among
predator types. Because capturing prey
for many mammal species involves ma-

nipulation with forelimbs before inges-
tion, prey are periodically free from a
mammal’s grip, and a mammal’s atten-
tion is focused on the most active part of
the prey (/4). We thus hypothesized that
movement of an autotomized tail should
function to attract and maintain a mam-
mal’s attention on a tail and away from
an escaping lizard. In contrast, a prey
item is rarely free from a snake’s grip. In
addition, many snake species, in particu-
lar those that subdue prey by constric-
tion, do not manipulate prey before prey
movement has subsided (/6). We hy-
pothesized that autotomized tail move-
ment should increase the time required
for a snake to handle a tail, thereby
allowing more time for prey escape.

To examine whether postautotomy tail
movement distracts predators, we staged
encounters between lizards of two spe-
cies and a feral cat (Felis catus, 5.5 kg).
We chose the lizards Scincella lateralis
and Anolis carolinensis (17) because of
their high and low rates of tail thrashing
(18). Tail autotomy is the principal es-
cape tactic of S. lateralis, which relies on
autotomy to a greater extent than does
A. carolinensis (18); A. carolinensis uses
several alternative escape tactics. We
recorded the cat’s reaction to lizards of
both species plus their autotomized and
thrashing tails and their autotomized and
exhausted tails (/9). To examine whether
postautotomy tail movement increases
predator handling time, we staged en-
counters between S. lateralis and a
snake, Lampropeltis triangulum, again
using both autotomized and thrashing
tails and autotomized and exhausted tails
(20). For each tail, we measured total
handling time and two of its components:
subdue and ingestion time (2/). To exam-
ine whether postautotomy tail movement
is supported by anaerobic metabolism
and is greater in species that chiefly use
autotomy, we compared lactate concen-
trations of autotomized tails after thrash-
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Table 1. Responses of a feral cat to simulta-
neous presentation of autotomized tails and
live tailless bodies of A. carolinensis (N = 14)
and S. lateralis (N = 13). Attacks on exhaust-
ed as opposed to thrashing tails in A. caro-
linensis were not significantly different,
but those for S. lateralis were (P < .001;
x3(1) = 14.01).

Number of responses

Tail Attack Attack Escape
to to of
tail body lizard

Anolis carolinensis
Exhausted 0 8 3
Thrashing 0 6 1

Scincella lateralis
Exhausted 0 6 0
Thrashing 7 0 7

ing to those of intact tails after rest for
both species of lizards (22).

All of the lizards in the mammal ex-
periments immediately attempted to es-
cape. In 100 percent of the trials with A.
carolinensis (both thrashing and ex-
hausted tails), the cat pursued the lizards
and ignored the tails (Table 1). In 100
percent of the trials with exhausted S.
lateralis tails, the cat pursued and cap-
tured the lizards, whereas in 100 percent
of the trials with thrashing S. lateralis
tails the cat was attracted to and at-
tacked the tails. Lizard escape occurred
in all thrashing tail trials with S. lateralis.
Thus, in an encounter with a mammal,
postautotomy tail movement appears to
be a successful escape tactic for S. later-
alis, whereas the modest tail movement
in A. carolinensis is not.

In snake-lizard encounters with S. laz-
eralis, total handling time was signifi-
cantly longer for thrashing tails than that
for exhausted tails (P < .02) (23), pri-
marily because the subdue time was sig-
nificantly longer (Fig. 1) (P < .01); in-
gestion times were not significantly dif-
ferent. The time required for a snake to
subdue a thrashing tail—the handling
component affected most by prey move-
ment (I6)—Dbefore it could be manipulat-
ed and swallowed averaged 23 percent of
the total handling time; exhausted tails
required only 2 percent of the total han-
dling time for what could be called sub-
duction. Snakes required an average of
37 seconds longer to handle thrashing
tails than exhausted tails, increasing the
total time available for a lizard’s escape
by 40 percent. Snakes constricted 44
percent of the thrashing tails, a behavior
associated with prey subduction (16), but
none of the exhausted tails. Although
snakes attacked all exhausted tails, they
immediately released 43 percent of them
and returned to their original foraging
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behavior. Perhaps tail movement also
mimics captured lizard movement, relay-
ing to the snake a message of successful
capture.

Lactate concentration was significant-
ly higher in autotomized tails after
thrashing than in intact tails after rest for
both species (Fig. 2) (P < .001). Mean
lactate concentration in autotomized S.
lateralis tails (2.71 mg/g) was significant-
ly higher than that of A. carolinensis
(1.61 mg/g) (P < .001), and was one-
third higher than the maximum whole-
body concentration reported for lizards
(24). Although thrashing significantly in-
creased lactate content in A. carolinensis
tails, the increase reflects only the nor-
mal whole-body capacity of anaerobic
metabolism for this species; mean autot-
omized tail lactate concentration was not
significantly different from that of ex-
hausted whole-body A. carolinensis (t-
test) (25). In contrast, mean lactate con-
centration of autotomized S. lateralis
tails was twice that reported for exhaust-
ed whole-body S. lateralis (25). Howev-
er, because other values reported (25)
are for whole animals, and many lizards
use intact tails in locomotion (5, 11, 26),
it is possible that concentrations in S.
lateralis reflect the anaerobic metabolic
capacity of intact tails, an adaptation
that may facilitate rapid-burst locomo-
tion during escape (27). We tested this by
comparing lactate concentrations of au-
totomized tails after thrashing with those
of intact tails taken from lizards after
escape behavior (28). Mean lactate con-
centration of autotomized S. lateralis
tails after thrashing was eight times high-
er than that of intact tails after escape
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Fig. 1. Subdue time (S|, solid bars), ingestion
time (I, striped bars), and total handling time
(H,, open bars) for L. triangulum with autoto-
mized and exhausted or autotomized and
thrashing tails of S. lateralis. Sample sizes for
exhausted and thrashing tails, respectively,
are S; (N = 12 and 16), I, (N = 12 and 13),
and H, (N = 12 and 13). Data are reported as
means * standard errors of the mean.
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Fig. 2. Lactate concentration of intact tails at
rest, intact tails after escape behavior, and
autotomized tails after 60 seconds of thrash-
ing for A. carolinensis (open bars) and S.
lateralis (solid bars). For A. carolinensis,
N =6, 4, and 6, respectively, and for S.
lateralis, N = 6 in all three cases. Horizontal
lines represent mean values; vertical lines,
ranges; and rectangles, 1 standard deviation.

behavior (Fig. 2). Thus, the high anaero-
bic metabolic capacity of autotomized S.
lateralis tails appears to be an adaptation
for the postautotomy aspect of this de-
fense (29).

In many lizard species, such as A.
carolinensis, tail autotomy represents a
secondary line of defense to alternate
primary tactics (5, 30), functioning sim-
ply as a mechanical release that facili-
tates escape from a predator’s grip; after
autotomy has occurred, the autotomized
tail is not important to the success of this
defense. In contrast, in those species
that use tail autotomy as a principal
escape tactic, such as S. lateralis, our
results suggest that postautotomy tail
thrashing supplements mechanical re-
lease and that its function differs among
various predator types: to attract a pred-
ator’s attention or to increase the preda-
tor’s handling time of the autotomized
tail. Studies of postautotomy muscle
contraction in autotomized structures of
other vertebrates and many inverte-
brates (I, 3, 7) may demonstrate conver-
gence of both the functional and bio-
chemical bases of this novel predator
defense tactic.
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A Bean a-Amylase Inhibitor Formulation

- (Starch Blocker) Is Ineffective in Man

Abstract. A commercial a-amylase inhibitor with potent inhibitory activity in vitro
was used in a randomized double-blind, cross-over clinical trial in six nonobese,
healthy adult males. In these subjects, this inhibitor had no effect on the response of
blood glucose, insulin, or breath hydrogen to a standardized starch meal. It is
concluded that this formulation has no effect on starch digestion in humans.

A large number of a-amylase inhibitor
formulations (starch blockers) derived
from kidney bean have recently become
available to the general public as dietary
supplements. Advertisements for these
products claim that they decrease starch
digestion and absorption, resulting in
weight loss. In June 1982, consumption
of these starch blockers in the United
States was estimated to be 10 million
tablets per week (/). We have studied the
effects of one of several apparently simi-
lar commercial inhibitor formulations on
starch digestion and absorption in hu-
mans.

In vitro, a-amylase inhibitors prevent
hydrolysis of the «-1,4-glycosidic link-
ages of starch by noncompetitive binding
to the enzyme; however, their effect in
humans is unknown (2). Marshall and
Lauda isolated and characterized the in-
hibitor derived from kidney beans and
developed an in vitro assay for inhibitor
activity (3). Other reports have de-
scribed similar inhibitors derived from
other plant sources (4). These inhibitors
appear to be glycoproteins specific for
mammalian amylase of either salivary or
pancreatic origin. They appear to have
no other physiologic activity, for exam-
ple, trypsin inhibition or hemagglutma-
tion.

Effective inhibition of starch digestion
in vivo would diminish glucose forma-
tion and absorption by the small intestine
and increase the amount of undigested
starch reaching the colon. We tested the
effect of the inhibitor on glucose forma-
tion and absorption by measuring
changes in the concentrations of glucose
and insulin in the serum of human volun-
teers after they had consumed a starch
meal. We simultaneously measured
breath hydrogen levels that would rise if
greater than 6 to 10 g of unabsorbed
carbohydrate reached the colon (5). If a-
amylase inhibitors were effective, we
would expect a reduced increase in glu-
cose and insulin and elevated breath
hydrogen production.

We obtained «-amylase inhibitors
from four commercial sources. The in-
hibitors were assayed (6) for inhibitory
activity in vitro by the method of Mar-
shall and Lauda (3). We selected the
most active of these commercially avail-
able inhibitors for study and used two
tablets containing 16,666 units of total
activity. This dose was compared to a
calcium phosphate placebo which exhib-
ited less than § percent of the inhibitor’s
activity and was physically indistinguish-
able from the inhibitor (7).

We studied six, healthy, nonsmoking
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