
commodate both optical isomers, the 
bagworm has one type of receptor that is 
tuned to receive the R enantiomer exclu- 
sively. 
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Quinolinic Acid: An Endogenous Metabolite That Produces 
Axon-Sparing Lesions in Rat Brain 

Abstract. A current hypothesis links the neuroexcitatory properties of certain 
acidic amino acids to their ability to cause selective.neurona1 lesions. Intracerebral 
injection of the neuroexcitatory tryptophan metabolite, quinolinic acid, has behav- 
ioral, neurochemical, and neuropathological consequences reminiscent of those of 
exogenous excitotoxins, such as kainic and ibotenic acids. Its qualities as a 
neurotoxic agent suggest that quinolinic acid should be considered as a possible 
pathogenic factor in neurodegenerative disorders. 

Kainate and ibotenate are neuroexcit- 
atory and toxic amino acids of plant and 
fungal origin, respectively ( I ) .  Injection 
of either of these two substances into the 
brains of experimental animals produces 
effects that have been construed to pro- 
vide models of human neurodegenera- 
live disorders. In particular, striatal le- 
sions caused by these agents closely 
resemble the neuropathologic and neuro- 
chemical changes characteristic of Hun- 
tington's disease (2). Intraventricular (3), 

intrahippocampal(4), or systemic (5) ad- 
ministration of kainate results in seizures 
and concomitant nerve cell changes simi- 
lar to those observed in temporal lobe 
epilepsy in the human. The structural 
resemblance of exogenous amino acids, 
such as kainic and ibotenic acids, to 
endogenous excitatory amino acids, 
such as glutamic and aspartic acids, has 
led to the hypothesis that hyperfunction 
of the body's own "excitotoxins" may 
be related to neuronal damage in certain 

Fig. 1. Light microscopic analysis of 30-km thionin-stained cryostat sections. (A and B) 
Micrographs of rat striatum 4 days after intrastriatal infusion of 60 nmole quinolinic (A) or 800 
nmole nicotinic (B) acid. Arrows in (B) delineate the track of the injection needle (XSO). (C and 
D) Effects of intrahippocampal administration of 30 nmole of quinolinic acid (C) or 800 nmole of 
nicotinic acid (D). Rats were killed 4 days after operation. Tracks of the injection needles are 
clearly identifiable in both micrographs. Arrows in (C) indicate the sharp border between 
degenerated and intact pyramidal cells ( x  10). 
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neuropsychiatric diseases (6). Endoge- 
nous excitatory amino acids have been 
shown to exhibit only marginal neuro- 
toxic potency in the mature nervous sys- 
tem when compared to the experimental 
neurotoxins. We now report that nano- 
mole amounts of the tryptophan metabo- 
lite quinolinic acid (2,3-pyridine dicar- 
boxylic acid), known as a mild convul- 
sant and excitant of cortical neurons (7), 
can produce axon-sparing neuronal le- 
sions after intracerebral injection in rats. 
Neurochemical, neuropathological, and 
gross behavioral analyses show that 
quinolinic acid mimics the effects of 
kainate and ibotenate in both character 
and intensity. 

Unilateral intrastriatal application of 
3 150 nmole of quinolinic acid resulted 
in tonic-clonic movements of the contra- 
lateral forelimb, lasting approximately 4 
to 6 hours after the rats awakened from 
anesthesia (8). This behavior, which was 
dose-dependent and was usually accom- 
panied by episodic barrel-like rotations, 
was virtually indistinguishable from that 
seen after identical treatments with na- 
nomole amounts of kainic or ibotenic 
acids (2) and has been related to in- . . 
creased activity of dopamine-containing 
elements in the striatum (9). No abnor- 
mal behavior could be observed after the 
operation. 

Neuronal cell loss around the injection 
site was noticed at doses as low as 12 
nmole. The number of glial cells did not 
appear to be reduced. With the excep- 
tion of neuronal degeneration, the gener- 
al appearance of the striatum, including 
myelinated internal capsule fibers, was 
unchanged (Fig. 1A). Lesions caused by 
the toxin radiated from the tip of the 
needle and increased in size with in- 
crease of the amount of quinolinic acid 
used. Even brains treated with large 
doses (600 nmole) of the toxin did not 
reveal "distant" nerve cell loss, such as 
in limbic structures, which is observed 
after striatal kainate lesions (10). 
Healthy neurons were abundant close to 
the injection site of 800 nmole of nicotin- 
ic acid, the product of quinolinic acid 
decarboxylation (I I )  (Fig. 1 B). 

Ultrastructural analysis of the striatum 
4 days after injection of 60 nmole of 
quinolinic acid revealed disturbance of 
neuropil and nerve cells (Fig. 2A). The 
most conspicuous changes were dendrit- 
ic swelling and decreased numbers of 
synaptic complexes as compared to con- 
trols. When the material was examined 
at higher magnification, many of the re- 
maining axodendritic synaptic complex- 
es showed swelling and clearing of post- 
synaptic components while presynaptic 
components retained a normal appear- 

ance (Fig. 2B). Well-preserved axons, 
both myelinated and unmyelinated, but 
only very few identifiably normal den- 
drites, were evident throughout the neu- 
ropil. 

Neurochemical measurements con- 
firmed the axon-sparing qualities of stria- 
tal quinolinic acid lesions. As compared 
to the contralateral side. the activities of 
striatal glutamic acid decarboxylase and 
choline acetyltransferase, marker en- 
zymes for intrinsic GABAergic (GABA, 
gamma aminobutyric acid) and choliner- 

gic neurons, decreased in a dose-depen- 
dent fashion with increasing amounts of 
quinolinic acid. Tyrosine hydroxylase 
activity, an indicator of the presence of 
the dopaminergic terminal network origi- 
nating from cell bodies in the substantia 
nigra, remained unchanged (Table 1). At 
the lower doses, GABAergic neurons 
appeared to be more susceptible than 
cholinergic neurons to the toxic actions 
of quinolinic acid. At our analytical end 
point (4 days after operation), the protein 
content on the injected side (600 nmole 

Table 1. Effects of intrastriatal quinolinic and nicotinic acid on local neurotransmitter-related 
enzymes. The amino acids (in 1 p1 of phosphate-buffered saline, pH 7.4) were injected into the 
striatum of rats and the animals were killed 4 days later. The striatal tissue was sonicated (1 : 20, 
weight to volume) in 50 mM tris buffer (pH 7.4) containing 2 percent Triton X-100, and enzyme 
activities (picomoles per minute per milligram of tissue) of the homogenates were determined. 
Standard errors of the means are indicated ( N  = 5). 

Glutamic acid 
decarboxylase 

Choline 
acetyltransferase Tyrosine hydroxylase 

Injected 
amino Percent Percent Percent 
acid of of of 

(nmole) Activity contra- Activity contra- Activity contra- 
lateral lateral lateral 

striatum striatum striatum 

Quinolinic acid 
60 307 -C 15 96 797 -C 40 % 2.5 -C 0.1 102 

150 158 -C 13* 55 557 -C 62* 78 2.6 -C 0.3 92 
300 85 t 17* 26 424 * 56* 50 3.0 -C 0.1 112 
600 44 t 14* 14 116 t 31* 14 2.9 2 0.1 86 

Nicotinic acid 
800 298 -C 4 96 790 t 4 5  95 2.5 t 0.1 94 

*P < .01 by paired t-test as compared to the uninjected contralateral striatum. 

I =?" -  - -- r l - v  * - - 

Fig. 2. A. Ultrastructural appearance of rat striatal neuropil4 days after injection of 60 nmole of 
quinolinic acid and after perfusion-fixation with 1 percent glutaraldehyde and 1 percent 
paraformaldehyde in Sorensen's phosphate buffer, pH 7.6. Prominent swelling of dendritic 
processes (a') is widespread. Postsynaptic densities can be seen on these dilated dendrites 
(arrows) in apposition to presynaptic elements, which appear unaffected. Myelinated axons, as 
seen in this field, appear to be well-preserved (X5000). (B) Enlargement of the ultrastructural 
appearance of affected synapses in the rat striatum at 4 days after 60 nmole of quinolinic acid. 
The dilated structure (4 represents a swollen dendrite, which is the postsynaptic element in the 
synapse indicated by the lower arrow. At the upper arrow, another synaptic junction is 
indicated, but the postsynaptic element may have undergone degeneration and shrinkage 
(~20,600). Striata from animals receiving intrastriatal injections of up to 800 nmole of nicotinic 
acid served as controls. In these tissues, there was no appreciable change except for mild tissue 
disruption immediately around the injection needle track. No abnormalities could be observed 
in homologous regions from uninjected contralateral striata of either quinolinate- or nicotinate- 
injected animals. 
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of quinolinic acid) was only slightly di- 
minished as compared to the contralater- 
a1 side (1.7 ri; 0.2 as compared to 
2.1 * 0.1 mg of protein per striatum). 

Intrahippocampal injections of less 
than 500 nmole of quinolinic acid pro- 
duced no clinically detectable behavioral 
consequences. Only doses in excess of 
500 nmole reliably resulted in general- 
ized convulsions characterized by inter- 
mittent jumping, running fits, ipsilateral 
turning, and pronounced exophthalmos, 
which lasted for 2 to 4 hours. Histologi- 
cal analysis demonstrated the degenera- 
tion of all hippocampal neuron types 
when doses more than 60 nmole were 
used. Such lesions, like the striatal cell 
loss, were well circumscribed and re- 
stricted to the dorsal hippocampus and 
underlying dorsal thalamic nuclei. 
Changes resulting from intrahippocam- 
pal injections of 30 nmole of quinolinic 
acid (Fig. 1C) indicated a selective vul- 
nerability of pyramidal cells compared to 
granule cells. Control injections of 800 
nmole of nicotinic acid failed to produce 
neuronal damage in the hippocampal for- 
mation (Fig. ID). 

Stone and Perkins (7) have briefly de- 
scribed the neuroexcitatory potency of 
quinolinic acid on cortical neurons. Our 
findings demonstrate the neurotoxic 
properties of quinolinic acid, which in 
part resemble those of both kainic and 
ibotenic acids. The endogenous agent is 
axon-sparing in its toxic effect and, like 
the exogenous toxins, does not cause an 
apparent reduction of glial cells in an 
area of complete neuronal destruction. 
Absence of distant lesions after striatal 
or hippocampal application, production 
of circumscribed lesions (2), and the lack 
of pronounced convulsant properties 
(12) indicate ibotenate-like activity of 
quinolinic acid. By contrast, the selec- 
tive vulnerability of hippocampal pyram- 
idal cells after low doses of quinolinic 
acid and the absence of neurotoxic ef- 
fects in 7-day-old rat striata or hippo- 
campi (13) are reminiscent of the proper- 
ties of kainic acid but not ibotenic acid 
(3, 4, 14). Therefore, while it seems safe 
to add quinolinic acid to the list of exci- 
totoxic amino acids originally described 
by Olney (15), it may be premature at 
this stage to categorize it according to 
commonly used guidelines, which are 
based mostly on pharmacological data 

obtained with electrophysiologically ac- 
tive amino acid antagonists (16). The 
above-mentioned qualities of quinolinic 
acid are distinct from those of folic acid 
and its derivatives, which have recently 
been suggested as endogenous kainate- 
like substances (1 7). 

Morphological, behavioral, and neuro- 
chemical observations after striatal quin- 
olinic acid injections revealed a picture 
similar to that known from intrastriatal 
infusions of kainic or ibotenic acids. 
Since those treatments have provided an 
animal model for Huntington's disease, 
it is possible that quinolinic acid has a 
role in the etiology of this disorder. Ei- 
ther increased transport from the periph- 
ery or a metabolic defect in the brain 
may provide an excess of quinolinic acid 
sufficient to induce neuronal degenera- 
tion of the type which we have observed 
experimentally. While the demonstration 
of a cerebral pathway for the synthesis of 
quinolinic acid is incomplete, the biosyn- 
thetic mechanisms for 3-hydroxyanthra- 
nilate (its immediate metabolic precur- 
sor) in the brain have been established 
(18). Our data appear to justify further 
evaluation of the presence, biochemis- 
try, and physiology of quinolinic acid in 
the central nervous system. 
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