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Sex Differences in Dendritic Structure in the Preoptic Area of 

the Juvenile Macaque Monkey Brain 

Abstract. Quantltative analysis of Golgi-stained neurons in the preoptic area o j  
the brain of prepuberal Macaca fascicularis monkeys indicated structural differences 
between males and females. Neurons of males had more dendritic bifurcations and a 
higher frequency of spines. The bifurcation difference appeared in all cell types and 
was concentrated in the ventrolateral preoptic area. The spine difference was 
greateJt in the central region of the preoptic area. N o  differences in gross 
measurements of this brain region were found. These results suggest that sexual 
dimorphism in the function of the monkey preoptic area may be based on differences 
in neuronal structure. 

Sex differences in adult mammalian 
reproductive physiology and behavior 
depend largely on differences in the orga- 
nization of the brain, which are activated 
in the adult by circulating hormones (1). 
To  a great extent, these sex differences 
in brain organization arise in response to 
gonadal steroid hormones present in the 
circulation during sensitive periods be- 
fore o r  after birth (2). Recent research 
has indicated that sexual dimorphism in 
brain function may reflect differences in 
brain structure. For example, the pre- 
optic area of the hypothalamus, which 
appears critical to male copulatory be- 
havior and which is also involved in 
phasic female endocrine regulation in 
rodents (3, 4), exhibits sexual dimor- 
phism in synaptic termination patterns 
(3, regional cell size and packing density 
(6), and dendritic density patterns ( 7 ) .  
Sex differences have also been demon- 
strated in other parts of the rodent brain 
(8) and in the size of certain brain nuclei 
and one type of nerve cell in avian spe- 
cies (9). 

We know relatively little about sex 
differences in the structure of the pri- 
mate brain. There are sex differences in 
the overall size of the brain in humans 
and other primates (lo),  and there is 
evidence for human sex differences in 
morphological brain asymmetry (11). At 
a finer structural level, the only primate 
sex difference reported to date is In larg- 
er nerve cell nuclei in the amygdala of 
male than of female squirrel monkeys 
(12). These were intact adults whose 
gonads were releasing different hor- 
mones. Thus the nuclear size differences 
could reflect dynamic responses to circu- 
lating hormones rather than a stable sex 
difference (13). Because the preoptic 
area shows the greatest variety of report- 
ed structural dimorphisms in rodents, it 
seems a likely site for structural dimor- 
phism at the cellular level in primates. 
This region is essential to normal male 
sexual behavior in macaques. Although 
it appears to be unnecessary for cyclic 
gonadotrophin regulation in primates in 
contrast to rodents (3), it probably plays 

fascicularis monkeys, between 8 months 
and 2 years of age, were used. The 
preoptic area (POA) and surrounding tis- 
sue was dissected from the brain, block- 
stained according to a Golgi-Cox proce- 
dure (16), embedded in celloidin, and 
sectioned at  a thickness of 100 p m  in the 
coronal plane. Each subject was as- 
signed a numerical code that did not 
reveal its sex. For  sampling purposes, 
the POA was defined as  a rectilinear 
solid lying under the anterior commis- 
sure (17). All well-impregnated neurons 
whose processes were not grossly atten- 
uated by sectioning or  otherwise ob- 
scured were traced by hand at  ~ 5 0 0  
magnification using a camera lucida mi- 
croscope attachment. No attempt was 
made to follow dendrltic processes in 
adjacent sections. Neurons were sub- 
classified on the basis of dendritic spine 
frequency (18). (The location of each 
soma with regard to the brain's midline 
and the center of the anterlor commis- 
sure was also recorded.) A total of 809 
neurons from females and 980 neurons 
from males were drawn. The drawings 
were analyzed by counting and measur- 
ing the projected length of each dendrltic 
branch. Branches were grouped in terms 
of their order away from the cell body, 
where first order refers to  a branch from 
the cell body, second order, a branch 
beyond a bifurcation, and so forth. 

The POA neurons were predominantly 
bipolar cells with a relatively simple den- 
dritic field. Two major types of sex dif- 
ferences were evident. (i) There were 
approximately 20 percent more dendritic 
branches per neuron in males than in 
females (Table 1). The mean number of 
branches in every male exceeded that in 
every female. There was no statistical 
difference in the number of branches 

Table 1. Brain measurements. Data are expressed as weighted mean 2 standard error of the mean based on four individual subject means (19). 
Abbreviations: M, male; F, female; S ,  sparse: CC, corpus callosum; AC, anterior commissure; and IC, internal capsule. 

-- 

Branches per neuron Dendritic Percent neurons 
length (km) classified Gross brain size 
- - -  -- 

Sex Order 
-- 

Inter- CC to Midline 

2 3 4 
Total 

1 
S medi- Spiny AC to IC 

ate 
-- 

(mm) (mm) 

M 2.41 2 0.04 3.05 2 0.12 1.26 t 0.10 0.26 2 0.05 7.02 t 0.29 299.4 ? 13.1 32.3 44.2 23.5 6.31 2 0.06 2.36 t 0.09 

F 2.39 c 0.02 2.64 2 0.11* 1.01 t 0.10 0.14 2 0.04 6.19 ? 0.271 277.2 t 8.2 38.6 40.9 20.5$ 6.16 2 0.08 2.44 t 0.10 

* F ( l ,  6) = 6.58; P < .05. tF(1 .  6) = 6 00; P < .05. tX2 (2) = 7.4; P < ,025 (21 ) .  
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arising from the soma. The total project- 
ed dendritic length did not differ [but see 
(19)l. Thus, the sexes differed in the 
tendency for dendrites of POA neurons 
to bifurcate. (ii) Females had a higher 
relative frequency of neurons classified 
as sparsely spined and correspondingly 
fewer neurons classified as  spiny (Table 
1) (20). 

The difference in neuronal branching 
was largely confined to the ventrolateral 
part of the sample area. In contrast, the 
sex difference in neuronal spine frequen- 
cy was evident throughout the sample 
reglon, although the difference tended to 
be most pronounced in the middle third 
of the dorsal-ventral extent of the sample 
area (21). 

Neither of these sex differences ap- 
pears to be attributable to  sex dimor- 
phism in the gross size of the brain 
region under study. (i) The sample region 
was adjusted for individual differences in 
brain size (17). (ii) Our measures of the 
distances between the corpus callosum 
and the anterior commissure and be- 
tween the midline and the medialmost 
extent of the internal capsule revealed no 
statistical or apparent sex dimorphism 
(Table 1). The difference in branching 
does not seem to arise from an orienta- 
tion difference, since the percent of 
branches truncated by the section plane 
was 18 percent in males and 20 percent in 
females. 

The spine frequency difference is sur- 
prising in light of the previously reported 
tendency for non-stria terminalis preop- 
tic afferents to terminate more frequently 
on spines in female than in male rats (5). 
Overall, in these macaques, the recipient 
neurons do not seem to reflect such a 
characteristic. Instead, the sex differ- 
ences reported here (more branched den- 
drites with higher numbers of spines in 
males) suggest that neurons of males 
may be differentiated to provide more, 
and perhaps different types of, synaptic 
connections. 

To  our knowledge, these data are the 
first to suggest a sex difference in the fine 
structural organization and, perhaps, the 
functional "wiring diagram" of a primate 
brain. Since we used juvenile animals in 
which circulating gonadal steroid hor- 
mone differences are minimal (15), it 
seems unlikely that these differences de- 
pend on gonadal steroid influences at  the 
time the animals were studied. Thus the 
differences in bifurcat~on tendency and 

spine frequency probably reflect either 
the masculinizing influence of testoster- 
one in the male during the prenatal sensi- 
tive period or some other manifestation 
of the presence of different sex chromo- 
somes. Although the functional signifi- 
cance of this and other POA sex differ- 
ences at  the cellular level remain uncer- 
tain, they may be related to sex differ- 
ences in the function of the POA in 
reproduction in the monkey. 
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