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The species of many genera varied 
little with respect to the characters ana- 

Adaptation of Fruit Morphology to Dispersal lyzed, yet virtually no family showed 
similar uniformity among component 

Agents in a Neotropical Forest genera. Thus I considered the genus as 
the smallest independent unit of morpho- 

Abstract. Two-thirds of 258 fruit species from Peruvian tropical forest belong to  logical classification. In the following 
one of two classes: large orange, yellow, brown, or green fruits with a husk; or small analysis, I counted each nonvariable ge- 
red, black, white, blue, purple, or mixed-colorfruits without a husk. The characteris- nus as only one form, assigning to it the 
tics of the two fruit classes match the size, visual ability, and jaw morphology of morphology of its component species. 
mammals and birds, respectively, and the animals also prefer t o  eat one class of Genera with appreciable variability of 
fruits. Thus, most  plants in this forest seem to  be adapted to  seed dispersal by either color or construction among species 
of two distinct broad arrays o f  animal taxa. were assigned to two or more morpho- 

logical forms as appropriate. 
The intricate morphological adapta- plants in a community are morphologi- For the nonvariable genera, the fre- 

tions of flowers to their pollinators are cally poorly matched with their dispers- quency of protected fruit forms shows a 
considered strong evidence for coevolu- ers (5). Based on an extensive systematic statistically significant variation by color 
tion, but similarly clear adaptations of analysis of fruit morphology from a sin- (Fig. 1 )  (9, 10). Almost every color cate- 
fruit morphology to one or a few dis- gle tropical forest, I show that a substan- gory can be objectively assigned to one 
perser species are scarce (I). Yet it has tial majority of plant species have fruits of two distinct sets, according to the 
long been known that various animal of one of two distinct types correspond- percentage of protected fruits (11). Type 
groups-ants, birds, bats-feed prefer- ing to birds and mammals as major dis- A fruits, with few protected genera, con- 
entially on fruits with distinctive dispers- persers. tain red, white, black, and mixed colors, 
er-correlated combinations of size, col- All the plant species with fleshy fruits whereas type B fruits, with mostly pro- 
or, and construction (2). These dispers- known to have fruited between Septem- tected genera, are orange, b r d n ,  yel- 
er-specific morphologies (syndromes) ber 1980 and December 1981 were sys- low, or green. The blue and purple color 
are thought to indicate generalized evo- tematically collected and described in a category could be included in either 
lutionary adaptation by plants to dispers- tropical moist forest (6) at the Cocha type, but is most similar to type A 
ers (2, 3). This evidence for adaptation Cashu Biological Station in the Manu (12), and is included in it for further 
has two difficulties. First, it is based on National Park, Peru (71°22'W, 11'52's). analysis. 
compilations of nonsystematic accounts These 258 species represent approxi- The same statistically significant asso- 
of fruit-eating by animals from many 
localities and habitats (4). If only the 
more obvious examples offruit-disperser Table 1. The distribution of fruit forms (N  = 172) among all possible combinations of three 

correspondence were published, the de- dichotomous characters. There is a statistically significant association among the three 
characters and also among each pair of characters (22). Numbers in parentheses are values 

rived be biased Or expected assuming joint independence of characters. 
exaggerated. Second, even if the ob- 
served correlations are accurate, they Set A colors Set B colors 

may represent only a small fraction of Size 
Protected Unprotected Protected Unprotected 

the fruit species that occur in one local- 
ity. Existing evidence does not rule out z ;: :: 5 (17.3) 70 (33.0) 10 (14.3) 7 (27.4) 

6 (15.0) 13 (28.7) 38 (12.4) 23 (23.8) 
the possibility that a large proportion of 
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Unprotected 

ciation of color and presence of a husk 
occurs in those genera with morphologi- 
cal variability among species (13). These 
correlations within genera suggest small 
or even no effects of phylogenetic con- 
straints, a t  the family and genus levels, 
in explaining the community-wide pat- 
terns. Thus, the significant associations 
among fruit characters are best ex- 
plained as being sets of mutually concor- 
dant features, which may adapt them to 
distinct disperser groups. 

In addition to color and construction 
differences, type A species are signifi- 
cantly smaller than type B fruits (Fig. 2) 
(14). The median size of all 258 fruit 
species is 14 mm, but 83.0 percent of 
type A fruits are smaller than this value, 
whereas 82.1 percent of type B fruits are 
larger. The difference is significant even 
if the husk of protected fruits is excluded 
in the measurements. 

Altogether, a substantial majority of 
fruit genera fall into a small subset of all 
possible morphological combinations. 
There are eight possible combinations of 
characters among the three dichotomous 
character sets (protected or unprotected, 
type A or type B,  > 14 mm or 14 mm). 
The distribution in these categories of 
172 fruit forms from all genera suggests 
highly significant associations between 
color, size, and presence of a husk (Ta- 
ble 1). The two most common combina- 

Fig. 1. Percentages of protect- 
ed and unprotected fruits in 
various color categories. Num- 
bers of genera for each catego- 
ry are in parentheses. Types A 
and B are homogeneous sets 
that differ significantly in the 
percentage of protected fruits 
(11). 

fruit species used for this study, 175 
(67.8 percent) belong to these two class- 
es. 

Although derived from a different per- 
spective, these two fruit morphologies 
agree well with the bird- and mammal- 
syndromes reported by other investiga- 
tors (2). The differences between these 
two fruit types correspond to differences 
between neotropical avian and mammali- 
an dispersers in size ( l j ) ,  visual ability 
(16), and mouthpart morphology (17). 
Furthermore, birds and monkeys d o  not 
choose fruits in the proportions available 
but preferentially feed on distinct fruit 
types. In this study, there are 70 small 

Minimum fruit dimension (cm) 

Fig. 2. Distribution of fruit size in sets A 
(N = 135 species) and B (N = 123 species). 

tions' of fruit traits are also the most Minimum djmension refers only to thebortion 
of the fruit handled b y  the disperser; the different: (i) small unprotected fruits dehiscent husk of capsules is not included, 

with type A colors and (ii) large Protect- Arrows point to the median values of the 
ed fruits with type B colors. Of the 258 distributions. 

unprotected type A-colored fruits and 38 
large protected type B-colored fruits 
(Table 1). Birds (excluding parrots) have 
been seen eating 23 of these 108 fruits, all 
from the first category (18). Monkeys eat 
68 of the 108 fruits, with significantly 
more (34 kinds) in the second category 
than would be expected by its availabil- 
ity (19). Monkeys seem to be more gen- 
eralized feeders with respect to  fruit 
type than are birds, which would have 
difficulty breaking into large protected 
fruits. 

This analysis suggests that the fruit 
morphology of a species frequently is 
adapted to the general characteristics of 
the animals that eat it. The strong associ- 
ation between size, color, and morpholo- 
gy even among species within genera 
implies that natural selection has pro- 
duced the divergence in fruit form asso- 
ciated with bird and mammal fruit-eating 
(20). The high frequency of adapted fruit 
species responding to whole arrays of 
morphologically similar disperser taxa 
contrasts with the reported scarcity of 
fruits adapted for dispersal by only one 
or a few animal species (1, 5, 21). Several 
hypotheses have been suggested to ex- 
plain this difference (1, j ) ,  including in- 
sufficient evolutionary time, the unpre- 
dictable location and availability of good 
germination sites, and morphological 
similarity among members of a given 
category of dispersers. One additional 
factor may be that plant-disperser stud- 
ies have focused on small unprotected 
fruits, whose morphology may make 
them available to  most disperser species, 
even those from clearly different arrays. 
In the case of large protected fruits, it is 
possible that there is much higher plant- 
disperser specificity. 

CHARLES H.  JANSON 
Department of Zoology, 
University of Washington, 
Seattle 98195 
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Immunoreactive Dynorphin-(1-8) and Corticotropin- 
Releasing Factor in Subpopulation of Hypothalamic Neurons 

Abstract. Zmmunoreactive corticotropin-releasing factor (CRF) and dynorphin-(I- 
8) were visualized in rat hypothalamus by immunohistoJluorescence with specific 
antibodies. In brains from colchicine-treated, adrenalectomized rats, neuronal 
perikatya with immunoreactive CRF were observed in the paraventricular nucleus of 
the hypothalamus. The CRF occurred together with the dynorphin-(1-8). However, 
the CRF immunoreactivity occurred only in a subpopulation of the dynorphin-(1-8) 
immurzoreactive  cell^. These Jindings suggest that there may be a functional 
interrelationship of CRF with dynorphin-related opioid peptides and provide further 
evidence that neurons may contain more than one bioactive substance. 

Corticotropin-releasing factor (CRF), 
which consists of 41 amino acid residues, 
was isolated from ovine hypothalamus 
extracts ( I ) .  The peptide is a potent 
stimulator of adrenocorticotropic hor- 
mone (ACTH) release in vivo (2) and of 
ACTH-like and P-endorphin-like immu- 
noreactivities in cultured pituitary cells 
( I ) .  It has been reported that CRF origi- 
nates in perikarya of the paraventricular 
nucleus of the hypothalamus (3). The 
paraventricular nucleus is one of the 
main synthesis and storage sites of vaso- 
pressin in mammalian hypothalamus (4). 
The same neurons in the paraventricular 
nucleus which manufacture vasopressin 
also contain dynorphin-(1-17) and a -  
Neo-endorphin, two leucine-enkephalin- 
related opioid peptides (5-7). These two 
opiate active substances also occur to- 
gether in brain areas other than hypo- 
thalamus (8). We have recently demon- 
strated that one of the major peptide 
products of this a-Neo-endorphinidy- 
norphin neuronal system is dynorphin- 
(1-8) (9), an amino-terminal fragment of 
dynorphin-(1-17), which is present in 
much higher concentrations in brain than 
dynorphin-(1-17). In subsequent immu- 
nohistochemical studies, very intense 
dynorphin-(1-8)-like staining occurred 
in the same neurons that were previously 
demonstrated to contain a-Neo-en- 
dorphin, dynorphin-(1-17), and vaso- 
pressin immunoreactive material (10). 

In the studies described here we inves- 
tigated whether the CRF-containing neu- 
rons in the paraventricular nucleus are 
related to those containing the opioid 
peptides. To  examine this question we 

developed a specific antiserum to C R F  
and compared the immunostaining pro- 
duced by this antiserum with the distri- 
bution of dynorphin-(1-8) immunoreac- 
tive material. The studies were carried 
out on brains from colchicine-treated, 
adrenalectomized rats, and we found 
that C R F  immunoreactivity is present in 
a subpopulation of the dynorphin-(1-8) 
immunoreactive neurons in the paraven- 
tricular nucleus. 

The antiserum to CRF was raised in 
rabbits against the synthetic peptide (11). 
In a radioimmunoassay (RIA) (12) this 
antiserum bound 30 percent of a trace 
amount of [ '251-Tyro]C~F at a dilution of 
1 in 100,000. A 50 percent inhibition of 
this binding of [ ' 2 5 ~ - ~ y r o ] C ~ ~  to the 
CRF antibodies occurred by addition of 
a 400 p M  concentration of authentic 
CRF. No inhibition of the labeled CRF 
occurred when 1 p,M sauvagine, a-Neo- 
endorphin, dynorphin-(1-8), dynorphin- 
(1-17), vasopressin, or oxytocin were 
added. The RIA specificity of the dy- 
norphin-(1-8) antiserum was established 
in studies previously described (9). 

Since RIA'S are verformed with a 
much higher antiserum dilution than im- 
munohistochemistry , other populations 
of antibodies may be active in the latter 
method, therefore the antiserum speci- 
ficity data obtained with the RIA are 
only of limited value in interpreting im- 
munohistochemical results obtained with 
these same antiserums. Therefore, we 
also subjected the two antiserums used 
to immunohistochemical blocking con- 
trols, which were performed by adding 
an excess of various synthetic peptides 
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