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Cloud Droplet Deposition in Subalpine Balsam Fir Forests: 

Hydrological and Chemical Inputs 

Abstract. Si~balpine forests of the northern Appalachians are s i~bject  to  signijicant 
deposition of water and chemicals via c lo i~d  droplet impaction. This deposition has 
been estimated by a method linking micrometeorological measi~res  of turbulent 
transfer, a detailed representation of canopy structure, and experiment~illy derived 
capture eficiencies. Water inputs from clouds are a h o i ~ t  46 percent, and chemical 
inputs range from 150 to  430 percent of the hulk precipitation. 

The deposition of water to vegetation 
from wind-driven clouds has long been 
recognized as an important hydrological 
input in many mountainous and coastal 
environments (I) .  The chemical and hy- 
drological significance of this phenome- 
non has been suggested for the higher 
elevational zones of the northern Appa- 
lachian Mountains (2, 3). Orographic en- 
hancement of precipitation alone would 
cause greater deposition of water and 
scavenged chemicals to these ecosys- 
tems than to surrounding lowlands (3). In 
addition, the subalpine zones, especially 
above an elevation of - 1200 m, are 
characterized by high wind speeds, 
lengthy periods of cloud immersion, and 
coniferous vegetation (4), all of which 
contribute to high potential rates of 
cloud droplet capture. Air masses pass- 
ing over this region contain high concen- 
trations of mineral acids, trace metals, 
and NH4' (5). Thus, precipitation com- 
bined with cloud capture can lead to 
exceptionally high rates of deposition of 
potentially harmful and beneficial sub- 
stances in these high-elevation ecosys- 
tems (6). 

Earlier investigators of cloud droplet 
deposition (1, 2) have measured the rates 
of cloud water collection with artificial 
collectors. Because of the complexity of 
the forest canopy structure, these results 
cannot readily be extrapolated to cloud 
water capture by an actual canopy. 

A more direct procedure is to deter- 
mine the rate of water deposition to the 
forest floor as throughfall (TF) and stem- 
flow (SF) during cloud immersion. We 
are currently making such measurements 
in the subalpine balsam fir [Abies balsa- 
mea L. (Mill)] forests in the mountains of 
New Hampshire. Our results typically 
show SF + TF rates of several tenths of 
a millimeter per hour. Even direct mea- 

surements of SF and TF  are hard to 
extrapolate, however, for several rea- 
sons: (i) a large number of biological and 
meteorological factors influence cloud 
water deposition, making it extremely 
variable in space and time; (ii) since 
some of the deposited cloud water evap- 
orates from the canopy (7), measurement 
of SF and TF gives an estimate of net, 
rather than gross, cloud water deposi- 
tion; and (iii) chemical alteration of the 
deposited solution by the canopy prohib- 
its estimation of ion deposition from an 
analysis of SF and TF. To calculate ion 
deposition via cloud water, a direct esti- 
mate of gross water input is needed. 
Consequently, we have developed mod- 
els of deposition and evaporation which 
allow us to estimate both gross and net 
deposition and to examine how they re- 
spond to changes in meteorological and 
canopy structure parameters. 

We visualize the exchange of cloud 
droplets and water vapor between the 
canopy and the atmosphere as encom- 
passing two aerodynamic regimes. With- 
in these regimes, fluxes are calculated as 
the ratio of potential (concentration) gra- 

Table 1. Model predictions of gross cloud 
droplet deposition (100 percent relative hu- 
midity) and net cloud droplet deposition rates 
(in millimeters per hour) at various values of 
wind speed (u) and relative humidity (R.H.). 
Wind speeds are for the canopy top, not free- 
stream values; cloud liquid water con- 
tent = 0.4 g m-3; mean droplet diame- 
ter = 10 pm; net radiation = 0; tempera- 
ture = 1°C. 

R.H. u (m sec-') 

(%) 2 4 6 

dients and resistances. The appropriate 
gradients are the cloud liquid water con- 
tent for cloud water deposition and the 
vapor pressure deficit for evaporation. 
The leaf surfaces are assumed to be 
saturated and perfect sinks for cloud 
droplets. 

The first regime is the crown space of 
the canopy, where air is mixed by turbu- 
lent eddies. We partitioned this space 
into layers 1 m high and calculated the 
transfer resistances between the layers 
from the aerodynamic roughness of the 
canopy and the canopy-top wind speed 
(8). 

The second aerodynamic regime en- 
compasses the boundary layers sur- 
rounding the individual canopy surfaces. 
Here water vapor moves primarily by 
molecular diffusion, whereas cloud drop- 
lets penetrate by inertial impaction (9). 
Resistances to vapor transfer through 
this regime have been determined for 
conifer shoots (10). We have measured 
the boundary layer resistances to droplet 
impaction for six canopy components 
(11) on the basis of wind-tunnel experi- 
ments (12). At each height level, the 
boundary layer resistances for all canopy 
components are summed in parallel. To 
convert these resistances to a ground- 
area basis, we divide by the appropriate 
ratio of component surface area to 
ground area. These ratios were deter- 
mined by sampling in subalpine forests 
(13). 

Similar models have been developed 
for evaporation (14) and for the deposi- 
tion of other atmospheric substances 
(15). They consist of systems of simulta- 
neous linear equations relating fluxes to 
the ratio of concentration gradients and 
resistances for each stratum in the cano- 
py; the equations are easily solved by 
matrix algebra in a computer. The solu- 
tion requires knowledge of several cano- 
py-top meteorological parameters (16). 
In the results presented here, we use 
canopy structure data from a typical, 
monospecific stand of balsam fir 10.3 m 
tall. Model predictions, based on the use 
of measured meteorological parameters, 
are within 7 percent of the observed net 
deposition rates as measured by SF-TF 
collections during four cloud events in a 
real 10.3-m stand. 

Predictions of gross and net (that is, 
gross minus evaporation) droplet deposi- 
tion fluxes for a realistic range of wind 
speeds and relative humidities are shown 
in Table 1. Gross deposition is sensitive 
to wind speed, and net deposition is 
sensitive to both wind speed and relative 
humidity. The simulated cloud water 
deposition velocity (gross flux divided 
by the liquid water content) for this 
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Table 2. Annual ion deposition by cloud droplet capture and bulk precipitation at an elevation of 
1220 m in a 10.3-m balsam fir stand on Mount Moosilauke, New Hampshire. (See text for 
sources of cloud deposition.) Bulk precipitation values are based on Dingman's (3) estimate of 
incident precipitation and Cronan's (23) estimate of ionic concentrations in the bulk precipita- 
tion. 

Ion 

Cloud 
deposition 
(kg ha-' 
year-') 

Bulk pre- 
cipitation 
(kg h a 1  
year-') 

Percentage 
of sum 

contributed 
by clouds 

stand, for a wind speed of 4 m secC1 and 
a cloud with a modal droplet size of 10 
pm, is 23 cm sec-I. 

If we assume (i) annual mean meteoro- 
logical conditions as  listed in Table 1 
(17), with a wind of 4 m sec-I and a 
relative humidity of 97 percent (typical 
conditions measured during cloud events 
at  our subalpine field site), (ii) that these 
forests are immersed in clouds 40 per- 
cent of the time (4), and (iii) that rime ice 
accretion reduces the deposition rate by 
50 percent for 6 months of the year (18), 
then our estimated annual gross deposi- 
tion of cloud water is 84 cm and the net 
deposition is 68 cm. These estimates are 
admittedly crude, but they are probably 
conservative and are certainly the best 

mate of the total influx. These data sug- 
gest extremely high rates of total atmo- 
spheric deposition of both beneficial sub- 
stances, such as  inorganic nitrogen, and 
potentially detrimental ones, such as 
mineral acids and trace metals. As a 
result, subalpine ecosystems may show 
the most exaggerated accumulations and 
effects of these substances in the north- 
eastern United States (2, 6, 22). 
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