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Fig. 1. Diagrams of the grid over which female 
tree frogs move during approaches to a speak- 
er broadcasting synthetic mating calls. To 
provide for vertical movements of the ani- 
mals, thin aluminum stakes (diameter, 10 mm; 
height, 1 m) were arranged on the grid area (1 
m by 1 m); each stake position is indicated by 
a fine cross or other junction of fine lines in 
the figure. The grid of vertical I-m stakes was 
stabilized by a series of crossbars at 25, 50, 
and 75 cm. These crossbars also served as 
reference points for estimating the vertical 
positions of the animals. Thus a spatial ar- 
rangement of many possible positions within 1 
m3 was provided. The speaker suspension 
plane (vertical) is indicated by the dashed 
line. The speaker and its support system were 
physically isolated from the grid so that there 
were no vibrational cues. (A) Diagram of a 
typical approach when the elevated speaker 
was active. The course of the frog is indicated 
by the heavy line, the numbers representing 
the frog's positions (1 to 12). The lengths of 
vertical lines below a number indicate the 
elevations to which the frog jumped or 
climbed at each position. (B) Diagram of a 
typical approach when the ground-level 
speaker was active, the numbers representing 
the frog's positions (1 to 8). 

immediately behind the grid and isolated 
from contact with the grid and aluminum 
sticks. One speaker was about 5 cm 
above the ground and the second speak- 
er about 1 m above the ground, directly 
over the other speaker. We broadcast 
synthetic mating calls [0.9 + 2.7 + 3.0 
kHz (2)] from one or the other of the 
speakers, and we released females indi- 
vidually from a point on the ground 
about 1 m from the side of the grid 
opposite the speaker suspension plane. 
Experiments took place at night, and we 
used a dim flashlight to observe the 
positions and orientation movements of 
the frogs during phonotactic approaches 
to within 15 cm of a speaker. 

Even before starting its approach, a 
frog typically made lateral scanning 
movements with its jaw parallel to the 
ground or slightly elevated. These scan- 
ning movements were observed through- 
out an animal's phonotactic approach to 
the speaker (2). Especially when the 
active speaker was elevated, the frog 
often repeated these lateral scanning 
movements after lifting its head. During 
a few approaches, an animal elevated 
and lowered its head without lateral 
scanning. These movements usually oc- 
curred when the animal was perched on 
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one of the horizontal crossbars that sta- 
bilized the grid. In nearly every ap- 
proach, the frog jumped onto one or 
more sticks, even when the speaker was 
not elevated. When on a stick, the ani- 
mal's initial lateral scanning movements 
were usually similar to those made when 
on the ground; that is, it aligned its jaw 
parallel to the ground even if it had to 
twist its head to do so. However, some- 
times the head was tilted slightly (< 45") 
from the horizontal plane. Scanning 
movements of the tree frog, which oc- 
curred in every approach we observed, 
were one of the most prominent features 
of its sound localization behavior. By 
contrast, the barn owl can ascertain both 
the azimuth and elevation of a sound 
source even without scanning (3). 

When the elevated speaker was active, 
the frog always continued to approach 
the elevated speaker by hopping from 
stick to stick, and it often climbed up- 
ward on one or more sticks. When the 
ground-level speaker was active, the frog 
usually hopped back to the ground be- 
fore touching the speaker. Typical ap- 
proaches are diagramed in Fig. 1, and the 
vertical positions of eight animals during 
19 approaches are plotted as a function 
of horizontal distance from the speaker 
suspension plane in Fig. 2. Nine ap- 
proaches took place when the sound 
came from the elevated speaker, and ten 
approaches when the sound came from 
the ground-level speaker. The slope of 

Fig. 2. Vertical distance (elevation) 
above the grid as a function of horizontal 
distance to the speaker suspension plane 
(A) when the active speaker was elevat- 
ed, and (B) when the active speaker was 
near ground level. All of the data from 19 
approaches are included: nine approach- 
es were made when calls were broadcast 
from the elevated speaker and ten ap- 
proaches were made when calls were 
emitted by the ground-level speaker. 

the linear regression of vertical position 
on horizontal distance was -0.70 when 
the elevated speaker was active; the 
slope was -0.03 when the ground-level 
speaker was active. When the sound was 
emitted from the elevated speaker, the 
animals had usually (eight of nine ap- 
proaches) already begun to climb on a 
stick (vertical position > 0) at a horizon- 
tal distance of 75 to 90 cm from the 
speaker suspension plane. The elevation 
of the speaker at these distances was 
about 45" to 54". Sometimes a frog 
hopped close (within about 20 cm) to the 
position (plane) from which the elevated 
speaker was suspended but found itself 
still 30 to 60 cm below the speaker. The 
animal almost invariably hopped to a 
position farther away (horizontally) and 
then reoriented and began another ap- 
proach. 

Our study is the first to provide behav- 
ioral evidence concerning the localiza- 
tion of an elevated sound source in an 
animal lacking specialized external ana- 
tomical features. As we show in detail (2, 
4), this ability may be based on a variable 
sound pressure gradient system. It is 
well established that insects use a pres- 
sure gradient system for sound localiza- 
tion, and it has recently been suggested 
that small birds also use such a mecha- 
nism (5). We believe that these animals 
should also have the ability to localize 
elevated sounds. As in the tree frog, 
these soniferous animals must often face 

the task of distinguishing between ele- 
vated and nonelevated mates and repro- 
ductive competitors. 
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