Homeothermic Response to Reduced Ambient Temperature in a Scarab Beetle

Abstract. Elephant beetles (Megasoma elephas; Scarabaeidae) weighing from 10 to 35 grams, respond homeothermically when ambient temperature is reduced below about 20°C in the laboratory. This metabolic response is not associated with locomotion or any other overt activity. Warming is initiated when the body temperature reaches an apparent set point of 20° to 22°C. Unlike the case for euthermic birds and mammals, energy metabolism and body temperature in these beetles are conspicuously oscillatory, with a given cycle in oxygen consumption peaking before the corresponding cycle in body temperature.

During flight, insects belonging to many different orders attain thoracic temperatures $(T_{\rm th})$ greater than ambient temperature (T_a) . In some species endogenous heat production can be independent of flight or preparation for flight, and body temperatures (T_b) are elevated during activities such as sound production, terrestrial locomotion, and brooding (1). Endogenously elevated $T_{\rm b}$ in beetles was first reported 40 years ago in Geotrupes stercorarius that were preparing for flight (2). Elevated $T_{\rm b}$ in scarabs is also associated with terrestrial activity (3). Male rain beetles (Pleocoma sp.) warm to flight temperature (38°C) and maintain a T_b as high as 32°C during terrestrial activity, at air temperatures of 3°C (4).

We report here enhanced heat production and regulation of T_b in a large neotropical scarab beetle (*Megasoma elephas*) during exposure to decreasing T_a . This phenomenon is not associated with flight, preparation for flight, terrestrial locomotion, or any other overt activity.

We simultaneously measured $T_{\rm th}$, abdominal temperature (T_{ab}) , and instantaneous rates of oxygen consumption (\dot{V}_{O_2}) of freshly captured Megasoma at T_a values between 7° and 26°C. Behavior was monitored visually. We measured $T_{\rm b}$ with copper-constantan thermocouples (wires 0.13 mm in diameter) implanted dorsally at a depth of approximately 0.5 cm. The leads were attached to the surface of the beetle with beeswax and connected to thermocouple thermometers (Bailey Bat-12) whose outputs went to a microprocessor (AIM-65) via an automatic switch and an analog-to-digital converter. We measured T_a with a thermocouple inside the respirometer.

We measured the instantaneous \dot{V}_{O_2} in an open-flow system (5), using an oxygen analyzer (Applied Electrochemistry S3A) connected to the microprocessor. The effective volume of the system used for smaller beetles was 94 cm³ and for larger beetles was 390 cm³. The flow rates of dry, CO₂-free air were 116 and 145 cm³ min⁻¹, respectively.

SCIENCE, VOL. 216, 25 JUNE 1982

The T_a was controlled to within 0.5°C with a portable refrigerator equipped with a blower, a heating element, an observation window, and a thermostat. This system cooled the Lucite respirometer chamber containing a beetle at a rate of 0.3°C min⁻¹.

Megasoma ranging in mass from 10.8 to 34.8 g were captured at ultraviolet night-lights on Barro Colorado Island, Republic of Panama (6). Thermocouples were implanted on the day after capture. The beetle was placed in a respirometer chamber in the dark at a T_a of 25° to 26°C; T_{th} , T_{ab} , T_a , V_{O_2} , and behavior were monitored continuously. After the beetle had quieted down and T_{th} was

stable and equal to $T_{\rm a}$, body temperatures and $\dot{V}_{\rm O_2}$ were recorded for 30 to 35 minutes; then $T_{\rm a}$ was reduced by decrements of 5° to 8°C. After each reduction, $T_{\rm a}$ was held steady and $T_{\rm th}$ was allowed to stabilize. Thereafter, $T_{\rm th}$, $T_{\rm ab}$, $T_{\rm a}$, and $\dot{V}_{\rm O_2}$ were recorded for 16 to 35 minutes.

The $T_{\rm th}$ remained stable near 20°C for at least as long as 3 hours at T_a as low as 7.0°C (Fig. 1A). Mean \dot{V}_{O_2} increased linearly with the difference between $T_{\rm th}$ and T_a (Fig. 1B). The \dot{V}_{O_1} of two female Megasoma (mass, 10.8 and 22.3 g) with $T_{\rm th}$ equal to $T_{\rm a}$ (26°C) averaged 0.19 and 0.21 cm³ min⁻¹, respectively. These values are substantially greater than those predicted on the basis of mass for resting beetles at similar temperatures, but they are only 1/5 to 1/10 the rates characteristic of vigorous terrestrial activity at those temperatures (7). Thus, under the experimental conditions, the Megasoma we measured cannot be characterized as resting even though they were motionless at room temperature. At a T_a of 26°C, \dot{V}_{O_2} , was steady. At lower T_a , \dot{V}_{O_2} oscillated markedly; at a T_a of 15°C, the maximum value for \dot{V}_{O} , during a given oscillation was as much as 14 times the

Fig. 1. (A) The response of the thoracic temperature (T_{tb}) of Megasoma elephas to reduced ambient temperature (T_a) . (B) The regression of oxygen consumption (\dot{V}_{O_2}) ΔT on $(T_{\rm th} - T_{\rm a})$. The points are mean values for $V_{\rm O_2}$. The numerals are the number of measurements of \dot{V}_{O_2} made at 1minute intervals at a given value of ΔT . The vertical bars indicate 2 standard errors around the mean. (C) The relation between \dot{V}_{O_2} , T_{th} , abdominal temperature (T_{ab}) , and T_a during homeothermy. Oscillations in V_{O_2} and T_{th} are evident.

0036-8075/82/0625-1409\$01.00/0 Copyright © 1982 AAAS

minimum value during that cycle (Fig. 1C). The cycles of V_{O_2} were closely followed by oscillations in $T_{\rm th}$, with the peaks in \dot{V}_{O} , slightly preceding the peaks in $T_{\rm th}$ (Fig. 1C). We assume that the cycles in $\dot{V}_{\rm O}$, and $T_{\rm th}$ coincide with cycles of activity in the thoracic flight muscles. The T_{ab} values sometimes showed similar, but smaller oscillations which lagged behind those of the thorax. Our experiments usually lasted 2 to 3 hours, and during this interval the beetles were almost completely motionless and $T_{\rm th}$ was continuously elevated. We did not determine the maximum duration of the homeothermic response of Megasoma.

As long as T_b remains constant, heat production is necessarily equal to heat loss. Heat loss is proportional to the difference between $T_{\rm b}$ and $T_{\rm a}$ (ΔT); in the case of endothermic insects $T_{\rm b}$ refers to $T_{\rm th}$. A mammal with a $T_{\rm b}$ of 37°C at a $T_{\rm a}$ of 23°C should have the same heat loss as a Megasoma of the same mass with a $T_{\rm b}$ of 27°C at a T_a of 13°C. (This parity requires that the mammal and beetle have similar thermal conductances.) It is instructive to compare the \dot{V}_{O_2} (which is proportional to heat production) of a homeothermic Megasoma with that of placental mammals of similar mass experiencing the same ΔT (Fig. 2). For comparative purposes we have selected two small rodents whose metabolic rates were measured with an open-flow respirometry system smiliar to that used for Megasoma (8). The rodents, a kangaroo mouse (Microdipodops pallidus) and a pocket mouse (Perognathus californicus) have lower \dot{V}_{O_2} than Megasoma of the same mass when ΔT is greater than 5° to 7°C (that is, at T_a below the thermal neutral zone of the mammals). Below thermoneutrality, the mass-specific thermal conductances of the mammals did not change with $T_{\rm a}$, whereas the massspecific thermal conductances of the beetles decreased linearly with T_a . For example, the conductance of an 11-g beetle was 0.42 ml of O₂ per gram per hour per degree Celsius at a T_a of 26°C but was only 0.30 ml of O₂ per gram per hour per degree Celsius at a T_a of 8°C. The decrease was apparently caused by a decline in T_{ab} from 27.1° to 15.5°C while $T_{\rm th}$ remained constant. Consequently, heat loss from the abdomen decreased with decreasing $T_{\rm a}$.

The dearth of information on the natural history of Megasoma elephas makes ecological interpretation of the homeothermic metabolic response problematic. We assume that when T_b is regulated above $T_{\rm a}$ during terrestrial activity, the pattern of $T_{\rm b}$ regulation is the same as

Fig. 2. A comparison of the relation of massspecific V_{O_2} to ΔT in scarab beetles and heteromyid rodents of similar size. The curves for rodents are the regressions of their euthermic energy metabolism below the thermal neutral zone (8). The points for the beetles are the means of 16 or more measurements taken while $T_{\rm th}$ was constant at a given $T_{\rm a}$.

the pattern we observed in the laboratory at T_a below 20° to 22°C; that is, that variation in heat production rather than variation in heat loss to the abdomen is the primary mechanism of control of $T_{\rm b}$. Megasoma is certainly capable of supporting normal activity levels by regulating a high $T_{\rm b}$ at $T_{\rm a}$ below 20° to 22°C ($T_{\rm a}$ values as low as 15°C have been recorded on Barro Colorado Island), but we do not know whether the beetles could fuel the metabolic increase required, should $T_{\rm a}$ remain low for more than a few hours.

To our knowledge, among insects, a homeothermic metabolic response to decreases in T_a in the absence of locomotor activity has only been reported in worker honey bees (9) and in incubating queen bumble bees (10). The homeothermic responses of the beetles reported here were not as fine-tuned as those of birds and mammals. In the beetles, T_b de-

clined to about 20° to 22°C before there was any regulation. Thereafter, their metabolic response to a decrease in T_a was qualitatively similar to that of birds and mammals. However, instead of maintaining T_b constant, there was an oscillation over a range of 3° to 4°C with the frequency but not the amplitude of the oscillations increasing with ΔT . The beetles appear to have a definite set point below which they "defend" T_b . The greater the ΔT , the more rapid the heat loss and the more rapid the oscillations in \dot{V}_{O_2} and T_b .

> K. R. MORGAN G. A. BARTHOLOMEW

Department of Biology, University of California,

Los Angeles 90024

References and Notes

- B. Heinrich, Science 185, 747 (1974); M. L. May, Annu. Rev. Entomol. 24, 313 (1979); B. Heinrich, Insect Thermoregulation (Wiley, New Verb. 1991) York, 1981)
- 2. A. Krogh and E. Zeuthen, J. Exp. Biol. 18, 1 (1941).
- 3. G. A. Bartholomew and T. M. Casey, Science 195, 882 (1977); G. A. Bartholomew and B. Heinrich, J. Exp. Biol. 73, 65 (1978).
- K. R. Morgan, unpublished data. G. A. Bartholomew, D. Vleck, C. M. Vleck, J. Exp. Biol. 90, 17 (1981). Studies were carried out at the Barro Colorado 6. Station of the Smithsonian Tropical Research Institute in the Republic of Panama.
- 7. 8.
- G. A. Bartholomew and T. M. Casey, J. Therm.
 Biol. 2, 173 (1977).
 V. A. Tucker, J. Cell. Comp. Physiol. 65, 393 (1965); J. H. Brown and G. A. Bartholomew,
 Ecology 50, 705 (1969).
 A. Heusner and M. Roth, C. R. Acad. Sci. 256, 284 (1963); A. Heusner and T. Stusci. Inscotor
- R. Heusler and W. Koln, C. R. Acta. Sci. 250, 284 (1963); A. Heusner and T. Stussi, *Insectes Soc.* 11, 239 (1964); E. E. Southwick and J. N. Mugaas, *Comp. Biochem. Physiol.* 40, 935 (1971); K. Cayhill and S. Lustic, *ibid.* 55A, 355 (1972). (1976
- B. Heinrich, J. Comp. Physiol. 88, 129 (1974).
 Supported by NSF grants DEB 80-23917 (K.R.M.) and DEB 81-03513 (G.A.B.).

5 February 1982; revised 13 April 1982

Indoor Airborne Asbestos Pollution:

From the Ceiling and the Floor

Abstract. Electron microscopic measurements of the concentrations of airborne asbestos were carried out inside and outside an office building having ceilings sprayed with a crocidolite-containing material and floors covered with vinylchrysotile tiles. Under normal conditions in this building, constructed 10 years ago, the two asbestos-containing materials released fibers into the air. This is the first measurement of elevated (up to 170 nanograms per cubic meter) concentrations of indoor airborne asbestos associated with the weathering of asbestos floor tiles during their service life. Asbestos flooring is used in a large number of buildings and represents the third largest use of asbestos fibers in the United States and in Europe, ranking after roofing and asbestos-cement pipe.

The potential hazard arising from exposure to airborne asbestos inside buildings sprayed with asbestos-containing materials is currently the subject of much concern. The Environmental Protection Agency has undertaken a largescale program to control friable asbes-

tos-containing materials in school buildings (1). The Conseil Supérieur d'Hygiène Publique de France has recommended controlling the concentrations of airborne asbestos inside buildings sprayed with asbestos (2). Since 1975, analytical facilities for the measurement