
the semitropical estuaries of upper Flori- 
da (16). Evidence has been presented 
that the gene frequencies for a number of 
loci change dramatically along the ani- 
mal's distribution (17). Since this species 
has a restricted home range of approxi- 
mately 36 m (I@, the gene frequencies of 
specific populations could reflect adapta- 
tions to local environmental conditions 
(17). The LDH-B locus is particularly 
noteworthy because populations from 
the cold waters of Maine are essentially 
fixed for the L D H - B ~ B ~  genotype, 
whereas southern populations are fixed 
for the LDH-BaBa genotype (17). Since 
the catalytic efficiency of the purified 
allelic isozymes is consistent with the 
"cline" in LDH-B gene frequency, a 
selective scenario has been proposed (8). 
Our recent studies on the role of the 
LDH-B isozymes in the development 
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and hatching of Fundulus embryos (18) 
and the swimming performance results 
reported herein add confidence to  that 
hypothesis. Crystallization of the Tetramer of Histones H3 and H4 

LEONARD DIMICHELE 
DENNIS A. POWERS Abstract. Crystals of the histone tetramer (H3-H4j2 from calf thymus have been 

Department of Biology, grown. The crystals yield x-ray difSraction patterns with Bragg spacings as small as 
Johns Hopkins University, 3.5 angstroms. Crystals grown from two types ofpreparations have the symmetry of 
Baltimore, Maryland 21218 the space group P6, (or P65). The best crystals were grown from histones that had the 

amino terminal arms removed by mild trypsinization. 
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Fig. 1. The form I crystals were grown using 
the hanging drop version of the standard 
vapor diffusion technique (15). Calf thymus 
tetramer (5 to 15 mglml) prepared as de- 
scribed in (4) was dialyzed into 0.2M NaCl, 
0.25 mM EDTA, buffered to pH 7.5 with tris- 
HCl. This s dution was mixed with a solution 
of 6 to 12 percent (weight to volume) 6000- 
dalton PEG, 0.2M NaCI, and 0.25 mM EDTA, 
buffered with NaH2P04 and equilibrated with 
1 ml of the same PEG buffer. Crystals grew in 
2 to 3 months and were often small. (A) The 
form I1 crystals are hexagonal bipyramids 0.2 
mm long. The clipped calf thymus tetramer 
was prepared from trypsinized octamer (11). 
The crystallization method was the same as 
for form I, and seeding was performed as 
described in the text. (B) Acid-urea gel elec- 
trophoresis was camed out as described in 
(16). (Lane 1) Five micrograms of calf thymus tetramer (a, H3; b, H4). (Lane 2) The protein from afew form 1 crystals. (Lane 3). The protein from 
the trypsinized tetramer (c, trypsinized H3; d, trypsinized H4), the starting material for form I1 crystals. (Lane 4) The protein from a few form I1 
crystals. See .ext for details. (C) A 10" screened precession photograph of the h&U reflections from a form I1 crystal taken with a standard x-ray 
generator and a collimated beam. Sixfold symmetry is apparent. 

strating that it is the first histone subunit 
to complex with newly replicated DNA, 
the H2A-H2B dimer subunit being added 
only after this complex is formed (9). 

We began experiments to crystallize 
the H2A-H2B dimer, the (H3-H4)2 tetra- 
mer, and the octamer because we believe 
that knowing the precise structures of 
subassemblies that occur in solution is 
important for understanding the regula- 
tion of their assembly into the nucleo- 
some. In addition, crystals giving high- 
resolution diffraction information could 
improve the interpretation of the intact 
nucleosome structure. 

In our attempts to crystallize the (H3- 
H4)2 tetramer, we considered that the 
conformational flexibility of the amino- 
terminal arms (6) or their microhetero- 
geneity arising from postsynthetic modi- 
fication (10) might be interfering with 
crystallization. We therefore attempted 
to crystallize a preparation of (H3-H4)2 
tetramer from which the flexible arms 
had been removed (clipped tetramer) by 
controlled mild trypsinization (11). This 
is part of a broader study aimed at deter- 
mining the role of amino-terminal and 
carboxyl-terminal arms of histones in the 
structure of chromatin. A detailed study 
of the properties of mildly trypsinized 
histones has recently been completed 
(12). 

We have grown two crystal forms (I 
and 11) of the (H3-H4)2 tetramer from 
calf thymus that are suitable for x-ray 
diffraction analysis. Form I crystals (na- 
tive tetramer starting material) took 3 
months to grow and are rarely larger 
than 0.250 mm by 0.08 mm. The material 
in these crystals has apparently been 
proteolyzed during growth (see below). 
Crystals of form I1 (Fig. lA, clipped 
tetramer) were grown under the condi- 
tions described in the legend to Fig. 1. 
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Crystals appeared in a few days in the 
hanging drops equilibrated with 6 per- 
cent polyethylene glycol (PEG). Equili- 
brating the crystals grown from 6 percent 
PEG with a higher concentration of PEG 
causes the crystals to grow larger. Seed- 
ing those crystals into haaging drops 
with fresh protein and equilibrating the 
hanging drop first with 6 percent and 
later with 12 percent PEG causes the 

Table 1. Amino acid analysis of form I and 
form I1 preparations. All data were normal- 
ized to valine = 14 residues per one clipped 
H3 plus H4 unit. The "calculated" values are 
based on clipped H3 and clipped H4 frag- 
ments considered to be the most likely prod- 
ucts of limited trypsinization, that is, compris- 
ing residlies 38 to 135 and 21 to 102, respec- 
tively. 

Analysis 

Amino acid Form Form Calcu- 
I I1 lated 

Cysteine 
Aspartic acid1 

asparagine 
Threonine 
Serine 
Glutamic acid/ 

glutamine 
Proline 
Glycine 
Alanine 
Valine 
Methionine 
Isoleucine 
Leucipe 
Tyrosine 
Phenylalanine 
Histidine 
Lysine 
Arginine* 

Total 161.7 169.4 180 

'The amount of arginine detected in the control 
preparation of intact tetramer was similarly lower 
than expected (data not shown). Indeed, correction 
of the totals of form I1 for the difference in arginine 
between calculated and observed brings the total 
number of residues to 180 again. 

crystals to continue to increase in size. 
We now have crystals more than 0.4 mm 
wide. Forms I and I1 appear to be iso- 
morphous, although they have different 
habits. The relatively isometric hexago- 
nal bipyramids in form I1 are more con- 
venient for x-ray study. In addition they 
grow more quickly and to larger size. 
The crystals have the symmetry of the 
?pace group P6, or P65, with a = b = 81 
A and c = 100 A. At low resolution, 
however, approximate twofold rotation- 
al symmetry is apparent normal to the 
hexagonal axis, giving rise to the approx- 
imate space group P6122 or P6522. In the 
latter space group there are 12 asymmet- 
ric units per unit cell. From the known 
molecular mass of the clipped tetramer 
(43,000 daltons), and its approximate 
density (1.35 glcm3), it can be shown that 
12 half-tetramers would occupy about 56 
percent of the volume of the unit cell. 
Fewer than six tetramers cannot provide 
12 asymmetric units; a multiple of 6 will 
not fit into the unit cell. Thus, if the 
space group were P6122, there would be 
half a tetramer in the crystallographic 
asymmetric unit. For the correct space 
group, P61, there is a whole tetramer in 
the asymmetric unit, and the tetramer 
has an approximate noncrystallographic 
twofold axis in it. 

Figure 1B shows a number of acid- 
urea (Chalkley) gels illustrating the state 
of the protein in the crystals. Lane 1 
shows standard calf thymus tetramer. 
Lane 2 contains form I crystals and 
shows bands for H4 and for partially 
proteolyzed H3. The same protein sam- 
ple gave rise to a single band on sodium 
dodecyl sulfate (SDSkpolyacrylamide 
gel electrophoresis (not shown), indicat- 
ing that the proteolyzed form of H3 was 
migrating with the intact H4 in this sys- 
tem. Lane 3 contains clipped tetramer 



prepared from octamer, which was mild- 
ly trypsinized (11). Lane 4 contains the 
protein from a few form I1 crystals. The 
bands characteristic of trypsinized H3 
and H4 are apparent. Since SDS-gel 
electrophoresis yielded three bands, 
there might be some additional proteoly- 
sis in the crystal (not shown). 

The amino acid analysis of the form I1 
preparation is consistent with an equi- 
molar H3-H4 complex with the amino 
termini of both proteins removed (Table 
1). The amino acid analysis of the form I 
preparation indicates similar proteolysis. 

Figure 1C shows a 10" screened pre- 
cession photograph of a form I1 crystal 
about 0.4 mm across. This film shows 
reflections at 4.4-ii resolution, the limit 
set by the precession angle. Small-angle, 
unscreened photographs show reflec- 
tions past 3.5-,A resolution that should be 
measurable. The crystals are surprising- 
ly resistant to radiation damage. Form I 
crystals photographed at the Cornell 
High Energy Synchrotron Source 
(CHESS) with an extremely intense, fo- 
cused monochromatic beam gave films 
comparable to that shown in Fig. 1C. 

A number of studies demonstrate that 
chromatin briefly digested with trypsin 
has characteristics similar to that of un- 
digested chromatin. Trypsinized chro- 
matin yields 145-base pair repeats of 
DNA when treated with micrococcal nu- 
clease. Trypsinized nucleosomes are sta- 
ble particles that preserve the sensitivity 
of the nucleosomal DNA at ten base 
intervals to deoxyribonuclease I diges- 
tion (6, 7) and that retain a buried sulfhy- 
dry1 group (13). Trypsinized histones can 
be reconstituted with DNA into particles 
resembling nucleosomes (14). Therefore 
we believe that the structure of the tetra- 
mer with the amino termini removed is 
physiologically relevant. 

EATON LATTMAN 
Department of Biophysics, 
Johns Hopkins School of Medicine, 
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Epidermis of Human Skin: Pyroelectric and 
Piezoelectric Sensor Layer 

Abstract. The epidermis of live human skin has a permanent electric dipole 
moment perpendicular to its surface. Voltage responses to  a rapid change of 
temperature are pyroelectric, while voltage responses to pressure pulses are 
piezoelectric in nature. The time course of the responses depends on dX/dt (X, 
temperature or pressure). The epidermal surface can react to  all physical environ- 
mental influences to  which nonbiological pyroelectric materials are known to  
respond. Epidermal voltage signals can be perceived through the intraepidermal and 
the superjicial dermal nervous network. The pyroelectric and piezoelectric properties 
are also measurable on dead, dry skin samples. 

We examined the hair-free surface of 
the backs of the fingers of ten test per- 
sons. A measuring electrode and a refer- 
ence electrode were applied to the skin 
surface. The electrodes (area, 10 mm2) 
were placed approximately 1 cm apart; 
they consisted of 5 pI of colloidal graph- 
ite (Aquadag) held in place with adhesive 
rings (1). The measurements were car- 
ried out in a Faraday cage. Additional 
measurements were made on skin prepa- 
rations examined within 1 to 2 hours 

after surgery. The specimens (area, - 2 
cm2) were prepared from "intact" skin 
(epidermis plus corium; thickness, 130 to 
270 km) and thin epidermal layers or 
coriurn layers (thickness, 60 to 90 km). 
The specimens were attached with their 
inner (or outer) surfaces to the grounded 
electrode of a sample holder and were 
investigated in a shielded sample cham- 
ber. The front electrode (area, 10 mm2) 
was identical to the measuring electrode 
used for the in vivo measurements. 

Fig. 1. Polar behavior 
of epidermis of hu- 
man skin (fresh prep- 
arations). Opposite 
signs of PZE (a and b) 
and PE (c and d) volt- 
age responses of out- 
er (a and c) and inner 
(b and d) surfaces of 
the skin sample. (a 
and b) PZE responses 
to a square uniaxial 
pressure pulse; upper 
trace, skin response 
(100 pV per division); 
lower trace, signal of 
frequency generator 
(27.0 Hz). (c and d) 
PE responses caused 
by dielectric heat- 
ing (radio-frequency 
pulse of 12.6 MHz 
and - 200-msec du- 
ration); upper trace, 
skin response; lower 
trace, radio-frequen- 
cy signal. 
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