References and Notes

- P. P. C. Graziadei and J. F. Metcalf, Z. Zell-forsch. Mikrosk. Anat. 116, 305 (1971); D. G. Moulton, Ann. N.Y. Acad. Sci. 237, 52 (1974); P. P. C. Graziadei and G. A. Monti Graziadei, in
- Handbook of Sensory Physicology, vol. 9, Development of Sensory Systems, M. Jacobson, Ed. (Springer-Verlag, New York, 1978), p. 55. K. H. Andres, Naturwissenschaften 17, 500 (1965); P. P. C. Graziadei, Tissue Cell 5, 113 (1973); D. J. Moulton, in Conference on Odors: Evaluation, Utilization and Control W. S. Coin 2. Carlon, Utilization and Control, W. S. Cain, Evaluation, Utilization and Control, W. S. Cain, Ed. (New York Academy of Sciences, New York, 1974), p. 154; P. P. C. Graziadei and G. A. Monti Graziadei, in *Neuronal Plasticity*, C. W. Cotman, Ed. (Raven, New York, 1978), 2121
- p. 131. J. W. Harding, P. P. C. Graziadei, G. A. Monti Graziadei, F. L. Margolis, *Brain Res.* 132, 11 3. (1977)
- N. Oley, R. S. DeHan, D. Tucker, J. C. Smith, P. P. C. Graziadei, J. Comp. Physiol. Psychol. 88, 477 (1975).

- J. W. Harding and J. W. Wright, *Brain Res. Bull.* 4, 17 (1979).
 P. P. C. Graziadei, R. R. Levine, G. A. Monti Graziadei, *Proc. Natl. Acad. Sci. U.S.A.* 75, 5230 (1978).
- 7. J. W. Rudy and M. D. Cheatle, Science 198, 845 (1977)
- A preliminary study tested several dilutions of 8. each compound to establish a concentration that was not inherently aversive to intact mice. 9.
- F. L. Margolis, Proc. Natl. Acad. Sci. U.S.A. 69, 1221 (1972). 10. and M. Grillo, Neurochem. Res. 2, 507
- (1977)11.
- 12.
- (1977).
 J. W. Harding, T. W. Getchell, F. L. Margolis, Brain Res. 140, 271 (1978).
 J. W. Harding, K. Donlon, N. Chen, J. W. Wright, Proc. Soc. Neurosci. 3, 230 (1977); J. W. Harding and J. W. Wright, Brain Res. 168, 31 (1979) 31 (1979).
- C. Camara, unpublished observations.
 Supported by NIH grant NS 13976.

20 October 1981

Oxygen Delivery to the Brain Before and After Birth

Abstract. We studied the relationship between cerebral oxygen consumption and cerebral oxygen delivery (cerebral blood flow \times arterial oxygen content) in fetal, newborn, and adult sheep. Relative to the amount of oxygen consumed, cerebral oxygen delivery in the fetus exceeds that in the lamb and adult by 70 percent. This may represent a protective advantage for the fetus or simply a necessary adaptation to the low arterial oxygen pressure in the intrauterine environment.

A number of physiologic differences distinguish intrauterine from postnatal life. At birth, arterial PO_2 and blood pressure rise, while arterial PCO₂ falls (1). Blood pressure continues to rise to adult values. Each of these variables can affect cerebral blood flow (CBF) (2), and thus the supply of oxygen and metabolic substrates to the brain. Meanwhile, cerebral O₂ consumption (per gram of brain) rises after birth, then falls with maturation (2, 3). As development proceeds, the net result for the quantitative relationship between the brain's requirement for metabolic substrates, on the one hand, and their delivery by arterial blood, on the other, is unknown. In this report we examine only one aspect of this issue: developmental changes in the relationship between cerebral O2 consumption and cerebral O₂ delivery.

We studied eight fetal sheep in utero at 125 to 135 days of gestation (0.86 to 0.93 of term), nine newborn lambs at 4 to 8 days of age, and five adult sheep. We placed catheters in the brachiocephalic artery and superior sagittal sinus while subjects were anesthetized (4, 5). Between 1 and 4 days after surgery, we made four to ten paired measurements of O₂ content in arterial and sagittal sinus blood. In order to compare subjects over a range of arterial O₂ content, the inspired O₂ concentration was varied from 6 to 25 percent by established techniques (4, 5). Changes in arterial CO₂ tension were prevented by appropriate modifications of the inspired gas mixture. We measured CBF twice in each animal with the radioactive microsphere technique (4, 5). The CBF (milliliters per 100 g per minute) represents flow to all cerebral tissue anterior to the cephalic border of the pons. Cerebral oxygen consumption was calculated according to the Fick principle, by multiplying CBF by the cerebral arteriovenous O₂ difference.

The relationship between cerebral metabolic rate for O2 (CMRO2) and the total amount of O2 available to the brain is given by the ratio of CMRO₂ (CBF \times cerebral arteriovenous O₂ difference) to cerebral O2 delivery (CBF \times arterial O₂ content). This represents the fraction of available O₂ that the

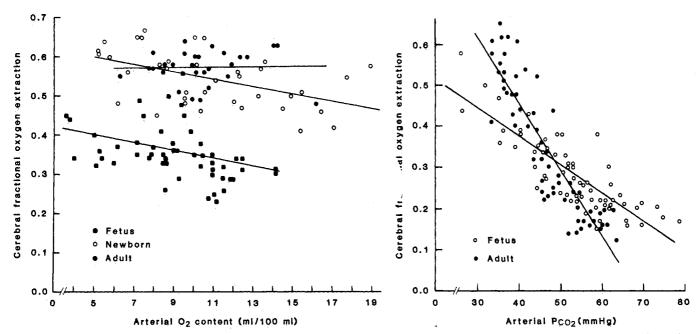


Fig. 1 (left). Relation of cerebral fractional oxygen extraction to arterial O2 content (milliliters per 100 ml) in fetuses, lambs, and adults as the inspired O₂ concentration was changed. Fetus: y = -0.01x + 0.45, r = -.40, P < .01; lamb: y = -0.009x + 0.65, r = -.49, P < .01; adult: Fig. 2 (right). Relation of cerebral fractional oxygen extraction to arterial PCO₂ (mmHg) in fetuses and adults as y = 0.0004x + 0.57, r = .02.the inspired CO₂ concentration was changed. Fetus: y = -0.0068x + .64, r = -.84, P < .01; adult: y = -.0164x + 1.11, r = .90, P < .01. The regression coefficients differed significantly (P < .05) when compared by a two-tailed *t*-test for independent means [t(118) = 8.1, P < .05].

0036-8075/82/0416-0324\$01.00/0 Copyright © 1982 AAAS

brain extracts from arterial blood. Since CBF appears in the numerator and denominator the ratio reduces to the ratio of the cerebral arteriovenous O2 difference $[(CaO_2 - CvO_2)]$ to the arterial O₂ content $[CaO_2]$ (5). This simplifies even further to $1 - (CvO_2/CaO_2)$. Thus a complex relationship reduces to the ratio of two easily measured variables.

Over a fourfold range of arterial O₂ content, cerebral fractional O2 extraction was consistently lowest in the fetus (Fig. 1). The fetal fractional extraction increased as we reduced arterial O2 content, but even at low O2 content fetal values rarely reached postnatal levels.

A low fetal fractional O₂ extraction could be due to low fetal CMRO₂, increased cerebral O₂ delivery, or both. We calculated CMRO₂ (in milliliters per 100 g of brain weight per minute) for each group: fetus, 4.1 ± 0.2 (mean \pm standard error of the mean); lamb, 6.1 ± 0.4 ; adult, 4.7 ± 0.3 . Fetal CMRO₂ was not different from the adult, although both fetus and adult differed significantly [F(2, 41) = 12.54; P < .05.Newman-Keuls test, P < .05] from the lamb. In contrast, fetal O₂ delivery is higher than that of the adult. Fetal cerebral blood flow is twice that in the adult $(121.8 \pm 10.1 \text{ versus } 63.8 \pm 3.9 \text{ ml per})$ 100 g/min) despite similar arterial O2 content (10.7 \pm 0.9 versus 12.8 \pm 1.1 ml per 100 ml).

Why is cerebral O₂ delivery higher in the fetus? A rise in PaCO₂ increases CBF without changing arterial O₂ content or $CMRO_2(2)$; as a result, fractional O_2 extraction falls. Fetal $PaCO_2$ is higher than postnatal values (I); in our study fetal $PaCO_2$ was 48 ± 2 mmHg, in contrast to 35 ± 3 mmHg in the adult. If the relationship between fractional extraction and $PaCO_2$ could be described by a single function common to fetus and adult, one might attribute the differences between fetus and adult to PaCO₂.

We therefore sought evidence in a separate group of seven fetuses and seven adults that the difference in fractional O₂ extraction was simply the result of differences in PaCO₂. Experimental preparations and procedures were the same as in the first study except that we changed inspired CO₂ concentration rather than O₂. Figure 2 shows that PaCO₂ has a profound effect on fractional extraction in both groups, but the relationships are described by two distinct functions. Although adult and fetal fractional extraction happen to be equivalent at the fetal PaCO₂ of 48 mmHg, there is no reason to believe this is more than coincidental. The same is not true at the adult PaCO₂ of 35 mmHg.

These data do not eliminate the possibility that PaCO₂ contributes to differences in fractional extraction between fetus and adult. The PaCO₂ differences between adults and fetuses represent chronic situations that may not be mimicked by the acute changes in $PaCO_2$ in our experiments. Insofar as they are applicable, however, our data do not support the hypothesis that the only fundamental difference between fetus and adult is the $PaCO_2$.

The combination of a low fetal PaO_2 and the increased affinity of fetal hemoglobin for oxygen might contribute to the increase in fetal cerebral O_2 delivery. Because the affinity of fetal hemoglobin for oxygen is high (6), the fetus has a much lower PaO_2 than lambs or adults at the same oxygen content. In this study, PaO₂ values of 28, 91, and 110 mmHg in fetus, lamb, and adult, respectively, were associated with arterial O2 contents of 10.7, 14.2, and 12.8 ml per 100 ml.

In theory, the quantity of O_2 within a tissue is a function of the total amount of O_2 in blood (that is, O_2 content), the PO_2 in the blood, the resistance to O_2 diffusion within the tissue, and the rate of oxygen consumption by the tissue (7). If hemoglobin affinity for oxygen increases, there will eventually be a noticeable decrease in tissue O₂ availability. Under such circumstances, CBF will rise (8), and fractional extraction will decrease. Recent measurements of CBF individuals with high-affinity hemoglobin bin variant (9) support this hypothetical sequence.

Our previous work in lambs (5) does not. We altered hemoglobin levels and PaO_2 in opposite directions so that arterial O₂ content remained constant. This resulted in combinations of arterial O_2 and PO_2 analogous to those produced by changing hemoglobin affinity. On theoretical grounds, one would expect blood flow to fall as PaO₂ rises. However, we found that blood flow and fractional extraction were the same with the "low" PaO₂ (40 mmHg)-high hemoglobin combination as with "high" PaO₂ (90 mmHg) and low hemoglobin. There are several possible explanations for the contradiction. (i) The low PaO_2 was not particularly low and may not have con-

stituted sufficient stimulus to increase blood flow. (ii) For the same arterial O_2 content the high PaO₂ group had a lower hemoglobin level than the low. The correlation between hemoglobin concentration and blood viscosity (10) might have increased flow in the high group while depressing it in the low, masking an opposite tendency based on PaO_2 . (iii) The major reason for increased flow in individuals with high-affinity hemoglobin may be that the chronically lower tissue PO_2 promotes an increase in the density of the cerebrovascular bed. This would not be reproduced by acutely changing the PO_2 - O_2 content relationship.

In any case, relative to CMRO₂, fetal cerebral O₂ delivery exceeds that in the adult by 70 percent. As yet, the reason cannot be specified, nor is it clear whether this offers the fetus a relative advantage, anticipating the stresses of labor and delivery, or is simply a physiologic adaptation to the low fetal PO_2 .

M. DOUGLAS JONES, JR. ADAM A. ROSENBERG MICHAEL A. SIMMONS RICHARD A. MOLTENI Departments of Pediatrics and Gynecology and Obstetrics, Johns Hopkins Hospital, Baltimore, Maryland 21205 RAYMOND C. KOEHLER **RICHARD J. TRAYSTMAN** Department of Anesthesiology and Critical Care Medicine. Johns Hopkins Hospital **References and Notes**

- 1. G. S. Dawes, Foetal and Neonatal Physiology
- (Year Book, Chicago, 1968).
 M. J. Purves, *The Physiology of the Cerebral Circulation* (Cambridge Univ. Press, London, 1973)
- D. B. Tyler and A. van Harreveld, Am. J. Physiol. 136, 600 (1942); A. Chesler and H. E. Himwich, *ibid.* 141, 513 (1944).
 M. D. Jones, Jr., R. E. Sheldon, L. L. Peeters, E. L. Makowski, G. Meschia, *ibid.* 235 (Heart Circ. Physiol. 4), H162 (1978).
 M. D. Jones, Jr., R. J. Traystman, M. A. Simmons, R. A. Molteni, *ibid.* 240 (Heart Circ. Physiol. 9), H209 (1981).
 G. Meschia, A. Hellegers, J. N. Blechner, A. S.

- G. Meschia, A. Hellegers, J. N. Blechner, A. S. Wolkoff, D. H. Barron, Q. J. Exp. Physiol. 46,
- 95 (1961). 7. A. V. Hill, Proc. R. Soc. London, Ser. B 104, 39
- K. V. Hin, *Proc. R. Soc. Ebnaol.*, *ser. B* **104**, *39* (1929).
 H. A. Kontos, E. P. Wei, A. J. Raper, W. I. Rosenblum, R. M. Navari, J. L. Patterson, Jr., *Am. J. Physiol.* **234** (*Heart Circ. Physiol.* **3**), H582 (1978).
- 1. P. H. Wade et al., Acta Neurol. Scand. 61, 210 (1980).
- T. G. Fan, R. Y. Z. Chen, G. B. Schuessler, S. Chien, Am. J. Physiol. 238 (Heart Circ. Physiol. 7), H545 (1980). 10. F
- 11. Supported in part by the Hospital for Consumptives of Maryland (Eudowood) and by grants HD-13830 and HL-10342 from the National Institutes of Health

14 August 1981; revised 22 October 1982