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~h~ uncoupling of and A has implica- hours of darkness with cool white fluorescent rates higher than that required for cell division, 

illumination of 210 (or 180) kE1rn2-sec until the has been reported for N- and P-specific uptake 
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A,  the assumption that = y is not net- of 36 to 72 pg per cell, and maximum rates of and Developing Organisms (Academic Press, 

photosynthesis of 150 ng of carbon per cell per New York, 1976); A. L.  Koch, Adv. Microb. 
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system of both species and is actually 
more abundant than a-MSH. Figure 1 - 
shows a high-pressure liquid chromato- 
graph of a-MSH immunoreactivity in rat 
and human hypothalamus compared to 
the elution of synthetic a-MSH (Peninsu- 
la Laboratories), deacetylated a-MSH 
(custom synthesis, Peninsula Labora- 
tories), and the methionine sulfoxide 
forms of these peptides [synthesized by 
reacting the synthetic peptides with hy- 
drogen peroxide and purifying these pep- 
tides by high-performance liquid chro- 
matography fractionation; see ( 6 ) ] .  In 
addition to the immunoreactive peak 
coeluting with a-MSH, three other im- 
munoreactive peptides that coelute pre- 
cisely with deacetylated a-MSH and the 
methionine sulfoxide forms of a-MSH 
and deacetylated a-MSH were detected 
by a COOH-terminally specific antise- 
rum (AB 22) which recognized both syn- 
thetic acetylated and deacetylated forms 
of the peptide. An NH2-terminally di- 
rected antiserum (developed by R. Es- 
kay and M. Brownstein), which requires 
the N-acetyl group for recognition, does 
not detect immunoreactivity coeluting 
with deacetylated a-MSH or the sulfox- 
ide form of this peptide. The sulfoxide 
forms of a-MSH and deacetylated a-  
MSH appear to be formed artifactually 
during the extraction procedure because 
methionine sulfoxide peptides are gener- 
ated during extraction of synthetic a- 
MSH or deacetylated a-MSH. The fact 

Deacety l -  
a ted a-MSH 

- 
3 0 0 r ~ a t  hypothalamus 

Z 2 0 0  Human hypothalamus 
1 5 0  

5 0  
E 0 - 

1 0  2 0  30  4 0  5 0  
Time from injection (min) 

Fig. 1. High-pressure liquid chromatograph of 
immunoreactive a-MSH in rat and human 
brain compared to the elution of a-MSH stan- 
dards. Immunoreactive a-MSH was extracted 
from three different human brains (8 to 22 
hours post-mortem) and from rat brains with 
0.1 N HCI or 2N acetic acid and boiled for 10 
minutes. Similar results were achieved with 
each extraction. A portion of the supernatant 
of the acid extract (obtained by centrifugation 
at 10,000 g) was adjusted to pH 3.0, filtered, 
and subjected to high-pressure liquid chroma- 
tography on a ~Bondapak  C18 reverse phase 
column with triethylammonium formate being 
used as the buffer and acetonitrile as the 
mobile phase [see (@I. 

that no interconversion of a-MSH to 
deacetylated a-MSH or deacetylated a-  
MSH to a-MSH was observed during the 
extraction procedure of synthetic pep- 
tides indicated that these peptides occur 
naturally in brain. 

P-Endorphin has both physiological 
and behavioral actions: among the for- 
mer the best known is the induction of 
analgesia. In contrast to P-endorphin, 
the N-acetylated endorphin has no anal- 
gesic potency and does not bind to the 
opiate receptor (3).  Therefore, N-acety- 
lation appears to regulate the activity of 
p-endorphin and may also regulate the 
activity of a-MSH. To examine the influ- 
ence of N-acetylation on the activity of 
a-MSH, we compared the behavioral 
activities of deacetylated and acetylated 
a-MSH in two different tests. 

First, we used a Y-maze testing proce- 
dure for black-and-white visual discrimi- 
nation in rats as described previously (6, 
7). Performance on this task is improved 
by intraperitoneal administration of a-  
MSH (77, but how this facilitation is 
brought about is unclear; a-MSH and 
related peptides have been hypothesized 
to increase memory, attention, arousal, 
or the motivational influence of environ- 
mental clues (8). We found that rats 
given daily intraperitoneal injections of 
a-MSH and deacetylated a-MSH (40 kg/ 
kg; 1 mg of peptide per 25 ml of saline) 15 
minutes before they were tested showed 
significantly improved performance on 
the maze compared to rats treated with 
saline. The saline-treated rats achieved 
criterion performance on acquisition and 
reversal of behavior in the Y-maze in 
45 r 1 and 45 r 7 trials, respectively. 
Rats receiving a-MSH achieved acquisi- 
tion and reversal criteria in 20 1. 4 and 
20 1. 6 trials, respectively, approximate- 
ly twice as fast as the saline-treated rats 
(P < .05; analysis of variance and Dun- 
can's New Multiple Range Test). Treat- 
ment of rats with deacetylated a-MSH 
also produced a slight improvement in 
acquisition and reversal compared to sa- 
line-treated rats, 35 a 4 (P < .05) and 
40 + 6 (not significant), respectively, al- 
though the effect was significantly less 
(P < .05 on acquisition, P < .O1 on re- 
versal) than that induced by a-MSH. 

In the second test we evaluated the 
relative potencies of a-MSH and deacet- 
ylated a-MSH in eliciting excessive 
grooming in rats because a-MSH and the 
structurally related corticotropin (ACTH) 
peptides induce an excessive grooming 
syndrome in a dose-dependent fashion (8). 
The excessive grooming elicited by a-  
MSH is thought to reflect a state of exces- 
sive arousal (9, 10) and excessive groom- 
ing in rodents is induced by fear, stress, or 

exposure to a novel situation (10). Figure 
2 shows the grooming response of rats 
injected intraventricularly with saline, 
deacetylated a-MSH (dotted line), or a-  
MSH (solid line). Rats injected with 0.1 to 
10 p1 of saline received grooming scores 
between 25 and 30; these scores were 
similar to those of rats that received no 
injections. Both a-MSH and deacetylated 
a-MSH increased grooming in a dose- 
dependent fashion although a-MSH was 
one or two orders of magnitude more 
potent. The lowest dose of deacetylated a- 
MSH to significantly increase grooming 
scores was 600 times higher than that 
required for a-MSH induction of groom- 
ing. The data are consistent with the find- 
ings of Gispen et al. (9), who demonstrat- 
ed that N-acetylated ACTH analogs are 
more potent in inducing the excessive 
grooming syndrome. 

The qualitative similarities between 
the behavioral effects of deacetylated 
and acetylated a-MSH indicate that the 
a-MSH behavioral information is en- 
coded in the amino acid sequence of the 
peptide and that the molecular potency is 
in part regulated by N-acetylation. The 
quantitative differences in potency be- 
tween a-MSH and deacetylated a-MSH 
could be due either to differences in 

Log dose (yg of peptlde or  JJI of saline) 

Fig. 2. Effects of intraventricularly adminis- 
tered deacetylated a-MSH (dotted line), a- 
MSH (solid line), or saline (1 to 10 p1; hori- 
zontal gray bar) on induction of grooming 
behavior. Peptides, 0.005 to 10 kg, dissolved 
in 10 k1 or less of phosphate-buffered saline, 
pH 7.4, were injected into the lateral ventri- 
cles of rats prepared with implanted cannulas 
at least 3 days prior to experimentation. Fif- 
teen minutes after they were injected the rats 
were evaluated for grooming for a testing 
period lasting 55 minutes as described (6, 7, 
9). Every 15 seconds the rat was observed and 
given a score of 1 if engaged in grooming or 0 
if no grooming was observed. The maximum 
possible score for a single test was 220. 
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degradation rates by peptidases or to 
differences in affinity for a-MSH or de- 
acetylated a-MSH receptors. Recent 
studies demonstrate that brain pep- 
tidases degrade deacetylated a-MSH 
about ten times as fast as they degrade a-  
MSH (6). More rapid degradation of de- 
acetylated a-MSH cannot, however, to- 
tally explain the differences in behavioral 
activity of the two peptides because de- 
acetylated a-MSH is actually more potent 
than a-MSH in a number of behavioral 
actions. One behavioral action in which 
deacetylated a-MSH is more potent than 
a-MSH is in the ability to block opiate 
analgesia and opiate receptor binding. 
Deacetylated forms of a-MSH or struc- 
turally related ACTH analogs consistent- 
ly block opiate-induced analgesia and 
opiate or 6-endorphin receptor binding, 
whereas the N-acetylated a-MSH is de- 
void of activity (11). It is clear that in this 
case receptor affinity and not peptidase 
sensitivity is likely to be responsible for 
the differences in bioactivity and that the 
N-acetyl group may be an important 
determinant for receptor interaction. 
The data, therefore, indicate that there 
are different structural requirements for 
different behavioral actions of a-MSH, a 
finding that has been demonstrated pre- 
viously (12), and that interactions with 
these different postsynaptic receptors 
could be regulated by acetylation reac- 
tions in the presynaptic opiomelanotro- 
pinergic neuron. It is interesting that 6- 
endorphin also occurs in both acetylated 
and deacetylated forms in the opiomela- 
notropinergic neuron and that acetyla- 
tion of the @-endorphin eliminates its 
potential to bind to the opiate receptor 
and elicit analgesia (3). The acetylation 
of both a-MSH and 6-endorphin appears 
to result from enzymatic mechanisms, 
and recent results indicate that different 
enzymes acetylate each of these peptides 
(13). Furthermore, a-MSH acetylating 
enzymatic activity appears to be induced 
by physiological manipulations which in- 
duce a-MSH synthesis (13). Differential 
regulation of the two acetylating en- 
zymes could alter the ratios of deacety- 
lated and acetylated forms of a-MSH 
and P-endorphin and by doing so change 
both the composition of the secretory 
output of the opiomelanotropinergic neu- 
ron and the resulting postsynaptic ac- 
tions. Such molecular regulatory pro- 
cesses are considerably more complex 
than the mechanism proposed by the 
classical model of the neurosecretory 
cell which releases one neurotransmitter 
or hormone. It is clear, however, that 
independent processing of individual 
neurotransmitters or hormones released 
from one multiple transmitter secretory 
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cell adds another dimension of complex- 
ity and flexibility to intercellular commu- 
nication. A question of importance is 
whether cells secreting multiple chemi- 
cal signals are the exception or rule. 
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Excretion of P-Phenethylamine Is Elevated in 
Humans After Profound Stress 

Abstract. The urinary excretion rate of the endogenous, amphetamine-like sub- 
stance 6-phenethylamine was markedly elevated in human subjects in association 
with an initial parachuting experience. The increases were delayed in most subjects 
and were not correlated with changes in urinary pH or creatinine excretion. The data 
suggest a stress-related role for 6-phenethylamine. 

6-Phenethylamine (PEA), an endoge- 
nous amine that resembles amphetamine 
both structurally and pharmacologically 
(I), has been implicated as an etiological 
factor in paranoid schizophrenia. Pa- 
tients with this disorder excrete large 
amounts of PEA in their urine (2). Stress 
may also play a role in paranoid schizo- 
phrenia, since in some patients it precipi- 
tates psychotic episodes (3). Amphet- 
amines can produce a paranoid state ( 4 ) ,  
and stress can reinstate this psychosis in 
individuals who then are abstinent (5). It 
seems, therefore, that stress may play a 
role in changes in PEA excretion ob- 
served in paranoid schizophrenics. How- 
ever, there has been no evidence that 
stress can alter PEA disposition in any 
species. We now report an elevation in 

the urinary excretion of PEA in humans 
following a parachute jump. 

Our subjects were male and female 
college students 18 to 28 years of age. 
They were admonished to refrain from 
ingesting alcohol or other drugs during 
urine sampling periods. Urine was col- 
lected from each subject during a 24- 
hour control period (2100 to 2100 hours) 
7 to 21 days before the jump and during 
the same 24-hour period encompassing 
the jump. In some subjects urine was 
collected for an additional 18 hours after 
the jump. Collected urine was stored at 
-70°C until being assayed for PEA by 
gas chromatography-mass spectroscopy 
(6). The urine from each micturition was 
assayed separately. 

Stress during the parachuting experi- 
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