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Dynorphin Is a Specific Endogenous Ligand of the 
K Opioid Receptor 

Abstract. In the guinea pig ileum myenteric plexus-longitudinal muscle prepara- 
tion, dynorphin-(1-13) a n d  the prototypical K agonist ethylketocyclazocine had 
equally poor sensitivity to naloxone antagonism a n d  showed selective cross protec- 
tion in receptor inactivation experiments with the alkylating antagonist p-chlornal- 
trexamine. In binding assays with membranes from guinea pig brain, ethylketocycla- 
zocine and  dynorphh(1-13) amide were more potent in displacing tritium-labeled 
ethylketocyclazocine than in displacing typical p a n d  6 opioid receptor ligands. In 
the two preparations studied, the dynorphin receptor appears to be the same a s  the K 

opioid receptor. 

Subclasses of opioid receptors are dis- 
tinguished on the basis of (i) differences 
in the physiological effects elicited by 
different opioids (I),  (ii) differences in 
the relative potencies and sensitivities to  
naloxone antagonism of opioid agonists 
in different smooth muscle preparations 
(2, 3), and (iii) differences in the mem- 
brane binding characteristics of different 
opioids in vitro (2, 4). The opioid peptide 
dynorphin (5-7) appears to act through 
an opioid receptor different from that of 
the p and 6 types (8, 9). 

The guinea pig ileum myenteric plexus 
is considered to contain p and K (but not 
6) opioid receptors (2). The p and K 

receptors differ in their sensitivities to 
naloxone antagonism (10). We used the 
guinea pig ileum myenteric plexus-longi- 
tudinal muscle preparation to compare 
the four opioids [Leulenkephalin (Leu, 
leucine), normorphine, dynorphin-(1-13) 
(D13), and ethylketocyclazocine (EKC) 
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(a prototypical K agonist) (Table 1). The 
equally high sensitivities of [Leulen- 
kephalin and normorphine to naloxone 
antagonism have been interpreted to 
mean that these two ligands act through 
the p receptor in this tissue (2). Since 
D l 3  and E K C  have equally low sensitivi- 
ties to naloxone antagonism (5) (Table 
I),  the same reasoning suggests that D l 3  
and E K C  act through the K receptor. 

To  investigate the relation between 
dynorphin and K receptors, we used a 
method described in (9) to  test wheth- 
er D l 3  and EKC would show cross pro- 
tection against the irreversible opiate re- 
ceptor antagonist p-chlornaltrexamine 
(CNA) (11). Exposure of ileum longitudi- 
nal muscle strips (with attached myen- 
teric plexus) to 3 n M  CNA for 20 minutes 
resulted in parallel shifts of the log dose- 
response curves for the agonists, which 
were not reversed during the experiment 
(about 6 hours). The potencies of 

[Leulenkephalin, normorphine, D13, 
and EKC were equally affected by CNA 
treatment (column 1 in Table 2). 

For each reversible agonist, we deter- 
mined the minimum concentration re- 
quired, during CNA treatment, to  reduce 
the potency shift by at  least 80 percent. 
For selective protection, this minimum 
concentration was established in the tis- 
sue bath 1 minute before CNA was add- 
ed. At the end of incubation, the tissue 
was washed to remove unreacted CNA 
and protecting ligand. The muscle strips 
were then tested with the agonists. 

Receptor protection by D l 3  had no 
effect on the potency shift of [Leulen- 
kephalin or normorphine, but the poten- 
cy shift of E K C  was substantially re- 
duced-to the same degree as  that of 
D l 3  itself (column 2 in Table 2). Recep- 
tor protection by the stable enkephalin 
analog [D- la*,^-~edlenkephalin (Ala, 
alanine) (DADLE) reduced the potency 
shift of both [Leulenkephalin and nor- 
morphine, but had no effect on the po- 
tency shift of D l 3  (column 3 in  able-2). 
The result with E K C  was intermediate; 
its potency shift was significantly re- 
duced (P < .05), but not to so  great an 
extent as that of [Leulenkephalin or nor- 
morphine. When E K C  was used as  the 
protecting ligand, equal protection was 
observed for normorphine, D 13, and 
EKC itself (column 4 in Table 2). Recep- 
tor protection by normorphine showed a 
lack of selectivity similar to  that of E K C  
(column 5 in Table 2). Protection provid- 
ed by lower concentrations of E K C  or 
normorphine showed less, but not selec- 
tive, protection. 

As shown by their naloxone sensitiv- 
ities (Table l ) ,  E K C  and normorphine 
interact preferentially with the K and p 
receptors, respectively. However, a t  the 
saturating concentrations required for 
receptor protection against alkylation by 
CNA, each ligand also occupies the oth- 
er receptor subclass, to  which it has 
lower affinity. The results in Table 2 
show that D l 3  is a more selective K 

agonist than E K C  and that DADLE is a 
more selective p agonist than normor- 
phine, although in mouse vas deferens 
this enkephalin analog is a selective 6 
agonist (2). 

To  characterize the receptor selectiv- 
ity for dynorphin in guinea pig brain, we 
performed a series of competition bind- 
ing experiments with [3~]d ihydromor-  
phine ( [ 3 H ] D H ~ ) ,  [ 3 ~ ] ~ ~ ~ ~ ~ ,  and 
[ 3 H ] E ~ C  as primary ligands, and nor- 
morphine. DADLE, EKC, and D l 3  am- 
ide (12, 13) as competing ligands (for 
method, see legend to Table 3). Normor- 
phine was much more effective against 
[ 3 H ] D H ~  than against [ 3 ~ ] D A ~ ~ ~  and 
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[ 3 ~ ] ~ ~ C  (Table 3). Unlabeled DADLE 
was most effective in competit ion with 
[3H]DADLE (141, less effective against 
[ 3 H ] D H ~ ,  and much less effective 
against [3H]EKC. This pattern of dis- 
placement with normorphine and DA- 
DLE illustrates the  well-known differen- 
tiation between t~ and 6 binding sites (2). 

Competitive binding of EKC was  most  
effective against [ 3 H ] ~ ~ C  and much less 
effective against [3H]DHM and [3H]DA- 
DLE. Although K receptors have not 
been detected in rat  brain (15), these data  
show that guinea pig brain contains 
opioid binding sites that  a re  selective for  
EKC and hence correspond t o  K recep- 

Table 1. Potencies and naloxone sensitivities of selected opioid agonists in the guinea pig ileum 
myenteric plexus-longitudinal muscle preparation. The bioassay procedure was as previously 
described (22). Concentration giving 50 percent inhibition (ICSO) of the electrically stimulated 
muscle twitch was determined by testing at three or more concentrations giving 20 to 80 percent 
inhibition, then interpolating by log-linear regression analysis. The apparent naloxone dissocia- 
tion constant (K,) was computed from the equation K, = CI(DR -I) ,  derived from the mass law 
for competitive antagonism at a single homogeneous population of receptors, in which the 
concentration (C) of naloxone is 100 nM and DR is the ratio of IC,, values for the agonist in the 
presence and absence of antagonist (23). Values are means i standard error for the number of 
independent determinations given in parentheses. [LeuIEnkephalin was obtained from Bio- 
search, normorphine hemihydrate from Applied Science, dynorphin-(1-13) from Peninsula 
Laboratories, and ethylketocyclazocine methanesulfonate from Sterling-Winthrop. 

Agonist Naloxone K, 
(nM) 

[LeuIEnkephalin 
Normorphine 
Dynorphin-(1-13) 
Ethylketocyclazocine 

tors, a s  was  reported in (16). Since the  
results with Dl3 amide were  virtually 
identical t o  those with EKC, w e  con- 
clude that this peptide binds preferential- 
ly to  K sites. 

In the brain binding assay,  Dl3 amide 
had about the same selectivity for  K 

receptors a s  EKC did, whereas in the  
ileum experiments (Table 2) EKC was  
less selective than D13. This difference 
could be  due  to  the  different assay condi- 
tions or to  subtle differences between 
central and peripheral receptors.  

Our  results support  the  hypothesis 
that dynorphin is a specific ligand of the  
K subclass of opioid receptors. I n  the  
guinea pig ileum preparation, the  agonist 
effects of Dl3 and EKC are equally 
sensitive to  naloxone antagonism and to  
inactivation by CNA and a re  protected 
by the  presence of Dl3 during treatment 
with CNA. In  the  competition binding 
assay with guinea pig brain membranes,  
Dl3 amide and EKC displayed identical 
displacement patterns with respect t o  
labeled ligands selective for  three  classes 
of opioid receptor. 

Table 2. Potency shifts after CNA treatment. For each ligand, IC50 was estimated before a 20-minute incubation of the longitudinal muscle strip 
with 3 nM CNA and again after washing by repeated changes of the Krebs-Ringer buffer in the bathing medium at least once every 10 minutes for 
1 to 2 hours. Data are mean potency shifts i S.E. for the number of independent determinations given in parentheses. The potency shift is the ra- 
tio of IC,, after CNA treatment to that before CNA treatment. Protective ligands were added to the organ bath 1 minute before addition of CNA. 
Muscle strips exposed to protective ligands alone for 20 minutes and then washed for 1 to 2 hours did not show a significant change in sensitivity. 
For ICSo values before CNA treatment, see Table 1. DADLE was obtained from Biosearch. 

Treatment condition 

Agonist CNA + 
CNA alone 100 nM 

Dl3 

[LeuIEnkephalin 14 t 1.5 (23) 12 t 1.8 (4) 
Normorphine 15 2 4.4 (14) 19 t 4.4 (10) 
Dynorphin-(1-13) 17 ? 2.4 (33) 2.9 t 0.6 (6) 
Ethylketocyclazocine 18 k 3.9 (12) 2.7 ? 0.6 (6) 

CNA + CNA + CNA + 
10 pM 300 nM 50 IJ.M 

DADLE EKC normorphine 

3.3 t 0.6 (11) Not tested Not tested 
2.1 t 0.3 (13) 3.7 t 0.2 (5) 2.3 ? 0.7 (6) 

17 t 2.5 (18) 3.0 t 0.5 (5) 4.7 t 1.5 (6) 
9.3 t 0.8 (7) 3.7 ? 0.4 (5) 1.9 t 0.3 (6) 

Table 3. Receptor selectivity in guinea pig brain (27). Binding curves were constructed with primary radioactive ligands considered to be 
prototypical for three classes of opioid receptor: [3H]DHM, p; [3H]DADLE, 8; and [3H]EKC, K.  Scatchard analysis yielded estimates of 
equilibrium dissociation constants (Kd) and approximate concentrations of high-affinity binding sites (B,,,) from linear least-squares fits to the 
high-affinity portions of the curves. Values of B,,, in picomoles per gram of tissue (N = 4) were [ 3 H ] D ~ ~ ,  4.7 t 0.7; [ 3 H ] ~ ~ ~ ~ ~ ,  16.6 2 1.4; 
and [ 3 H ] E ~ C ,  11.2 k 1.6. Values of Kd in nanomoles per liter (N = 4) were [3H]DHM, 1.7 t 0.4; [3H]DADLE, 2.4 * 0.4; and [3H]EKC, 0.8 * 
0.1. For competition studies, unlabeled ligands were added in a mixture of 5 p1 of methanol and 0.1M HCl(1: 1, by volume) 20 minutes before ad- 
dition of primary ligand; each primary ligand was used at 0.75 times its Kd. Slopes of competition curves were determined by least-squares 
methods on log-logit plots. The theoretical mass-law slope for simple competition is -2.3. Actual slopes were between - 1.6 and -2.2 in all cases 
except -0.9 for normorphine displacing [ 3 ~ ] E K C  and -0.6 for DADLE displacing [3H]EKC. The receptor selectivity index (RSI) is 100 times 
ICS0 for homogeneous displacement (for example, DADLE displacing [3H]DADLE) divided by ICS0 for displacement of the given primary ligand. 
Normorvhine displacement of [3H]DHM is 
consideied to be- a homogeneous displace- 
ment. No suitable technique has been devel- 
oped for using a dynorphin peptide as primary 
ligand, so values for Dl3 amide were referred 
to the lowest IC5,, that for displacement of 
[3H]EKC. Values are means ? standard error 
for determinations on brain tissue from the 
number of animals given in parentheses. 
[3H]DHM (90 Cilmmole) and [31i]DADLE (29 
Cilmmole) were obtained from Amersham, 
[3H]EKC (15 Cilmmole) from New England 
Nuclear, and Dl3 amide from Peninsula Lab- 
oratories. 
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RSI 

[3H]EKC 
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Because Dl3 and its amide have the 
full biologic potency of natural porcine 
dynorphin and the same relatively poor 
sensitivity to naloxone antagonism (5, 6, 
I.?), we conclude that our findings apply 
with equal force to natural dynorphin. 
Dynorphin immunoreactivity has been 
demonstrated by immunohistochemical 
means in the ganglia of the guinea pig 
myenteric plexus (17) and by radio- 
immunoassay in guinea pig brain (It?), as 
well as in rat pituitary, brain, and spinal 
cord (19). It seems probable, therefore, 
that dynorphin is the endogenous ligand 
of the K opioid receptor and it is the first 
endogenous ligand to be identified with 
selectivity for that receptor (20). 

Note added in proof: Conclusioils sim- 
ilar to those presented here were pub- 
h h e d  recently by Huidobro-Toro et al. 
and by Wiister et al. (21). A preliminary 
account of our results was presented at 
the Eighth International Congress of 
Pharmacology (Tokyo) and the Interna- 
tional Narcotic Research Conference 
(Kyoto), July 1981. 

CHARLES CHAVKIN 
IAIN F. JAMES 

AVRAM GOLDSTEIN 
Addiction Research Foundation and 
Stanford University, 
Palo Alto, California 94304 
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Polyamines Inhibit the Protein Kinase 380-Catalyzed 
Phosphorylation of Eukaryotic Initiation Factor 2a 

Abstract. Polyamines putrescine, spermidine, and sperrnine specifically inhibit the 
PK 380-catalyzed phosphorylation of eukaryotic initiation factor 2a  (eZF-2a). Since 
the PK 380-dependent phosphorylation of eIF-20. inhibits the initiation of protein 
synthesis, the possibility exists that the polyamines enhance protein synthesis by 
inhibiting the phosphorylation of eIF-2a by PK 380. 

Protein kinase 380 (PK 380) is a novel 
bovine adrenocortical cyclic nucleotide- 
independent protein kinase that cata- 
lyzes the phosphorylation of endogenous 
120,000-dalton peptides and in vitro spe- 
cifically phosphorylates the a-subunit of 
eukaryotic initiation factor 2 (eIF-2a) 
resulting in the inhibition of protein syn- 
thesis in reticulocyte lysate (I ,  2). The 
enzyme is different from two other cyclic 
nucleotide-independent protein kinases, 
hemin controlled repressor (HCR) (3) 
and double-stranded RNA activated in- 
hibitor (dsRI) (4), which also phosphoryl- 
ate eIF-2a and inhibit the initiation of 
protein synthesis. The repressor HCR is 
regulated by hemin, and dsRI is activat- 
ed by double-stranded RNA; in contrast, 
PK 380 is hemin-independent and is not 
activated by double-stranded RNA (2). 
In view of the potential role of PK 380 in 
eukaryotic protein synthesis (2), it is 
important to determine the factors that 
might regulate its activity. We now re- 
port that polyamines, putrescine, sper- 
midine, and spermine inhibit PK 380- 
catalyzed phosphorylation of eIF-2a. 

Lane 1 in Fig. 1 shows the phosphoryl- 
ation of endogenous 120,000-dalton pep- 
tide by partially purified enzyme. In the 
presence of eIF-2, PK 380 catalyzes the 
phosphorylation of a-subunit of eIF-2 
(lane 2 in Fig. 1). The eIF-2 preparation 
used in these experiments does not have 
any endogenous eIF-2a kinase activity 
(lane 6 in Fig. I), ruling out the possibili- 
ty of eIF-2a phosphorylation by a con- 
taminant eIF-2a kinase present in eIF-2 
preparation. Lanes 3, 4, and 5 in Fig. 1 
show that spermine, spermidine, and pu- 
trescine, respectively, inhibit the PK 
380-catalyzed phosphorylation of eIF- 
2a. The inhibitory effect of polyamines 
is concentration-dependent (data not 
shown) and the order of potency is 
spermine > spermidine > putrescine. 

Since polyamine is basic, it was a 
possibility that the polyamines nonspe- 
cifically interact with the enzyme or eIF- 
2 or both, thus inhibiting PK 380-cata- 
lyzed phosphorylation of eIF-2a. This is, 
however, not the case, since the other 
basic peptides polylysine and polyargi- 
nine do not block the phosphorylation of 

0036-807518210122-0415$01.0010 Copyright 0 1982 AAAS 415 




