
showed MLV particles with a weight- 
average diameter of 152 nm as compared 
to the 232 nm found in HN buffer. This 
represents a water loss of 67 percent in 
the MLV and an increase in particle 
density to  1.0472 g/cm3, as compared to 
the 1 .Ol54 g/cm3 assumed for the original 
particles. 

The particle size distribution data for 
the SUV particles are believed to be 
reasonably accurate even though no cor- 
rection for the osmotic effect of the su- 
crose-buffer mixture was used in the 
measurement. The osmotic activity for 
the much smaller SUV particles is ex- 
pected to be considerably less than that 
for MLV as a result of molecular con- 
straints caused by the minimal radius of 
the SUV particles. 

In the S F F F  analytical mode, it is 
relatively easy to  collect submilligram 
quantities of isolate with very high reso- 
lution. If the resolution is compromised 
somewhat, milligram to gram quantities 
can be isolated by having the instru- 
ment function as a selective filter ( 3 ) ,  
retaining large liposomes while allowing 
smaller ones to be eluted in the mobile 
phase. In conjunction with extrusion 
techniques (7, 9 ) ,  S F F F  should make 
possible the rapid preparation of appre- 
ciable amounts of liposomes with a poly- 
dispersity close to unity. 

It thus appears that S F F F  is a rapid, 
precise, and gentle method for the analy- 
sis of the particle size distributions of 
noninteracting biological colloids, as we  
have illustrated with liposomes. We be- 
lieve that S F F F  will be an equally impor- 
tant technique in the fractionation and 
size analysis of other biopolymers such 
as nucleic acids and cellular organelles 
such as ribosomes, mitochondria, and 
nuclei. 
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Human T Cell Antigen Expression by Primate T Cells 

Abstract. Phylogeneric study in primates of the reactivity of I1 monoclonal 
antibodies to human T cells and rosette formation in the reaction of primate T cells 
with sheep erythrocytes demonstrate that the sheep erythrocyte receptor and the 
determinants of T cell subset antigens are highly conserved during primate evolu- 
tion. Other T cell antigen determinants are less well conserved. Human, gorilla, and 
chimpanzee T cells showed identical reactivity with the monoclonal antibodies to 
human T cells. The expression of human T cell antigen determinants by primate T 
cells suggests a constant rate of evolution for this group of molecules and provide5 
additional evidence that man and African apes shared a relatively recent common 
ancestor. 

Comparisons of proteins from humans 
and other primates for variations in ami- 
no acid sequences, DNA restriction en- 
donuclease cleavage patterns, and im- 
munological cross-reactivity have pro- 
vided biochemical data in support of a 
relatively recent common ancestor (5 
million years ago) of man and African 
apes (1-3). Data have come from studies 
of primate albumin, transferrin, and cu 
and p globin proteins (1) .  Recent fossil 
evidence, although controversial, also 
supports this notion (4) .  Studies have 
been done on the reactivity of determi- 
nants of human histocompatibility anti- 
gens A and B with lymphocytes of non- 
humhn primates (5)  and on the use of 
monoclonal antibodies to T cells as ther- 
apeutic reagents in primates ( 6 ) ,  but few 
phylogenetic studies have been per- 
formed to evaluate the evolution of hu- 
man lymphocyte-related cell surface 
proteins. Hybrid cell methodology has 
provided the reagents needed to define 
the repertoire of lymphocyte surface 
antigens. In particular a large number of 
monoclonal antibodies to human anti- 
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gens specific to T cells have been pro- 
duced (7-13); the specificity and classifi- 
cation of these reagents have been re- 
viewed (14). 

Highly specific monoclonal antibodies 
react with only one antigenic determi- 
nant on a given molecule (15), and we 
have used a large panel of these reagents 
to study the expression of various human 
T cell antigen determinants on the T cells 
of nonhuman primates. Our goal was to 
seek evolutionary patterns of proteins 
specific to  the immune system. Blood 
was drawn from one to five animals of 
each of the following primates: gorillas 
(Gorilla gorilla), chimpanzees (Pan trog- 
lodytes), gibbons (Hylobates lar), Old 
World monkeys (rhesus, Macaca mu- 
latta; pig-tailed, Macaca nemistrina; and 
stump-tailed, Macaca speciosa), and 
New World monkeys (Cebus, Ceb~ls  
atella, and spider, Ateles fusciceps). 
Mononuclear cell preparations were 
made on Hypaque-Ficoll density gradi- 
ents. We used two methods to  determine 
the reactivity of the monoclonal reagents 
with primate T cells; indirect immunoflu- 
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Table 1. Reactiviry of peripheral blood T cells from various primates with monoclonal antibodies to human T cells. Monoclonal antibodies 
L17F12, TlOl, 10.2, DU-SKW3-1, 9.6, OKT3, A-50, and 3Al bind to most human peripheral T cells, whereas OKT4, OKT8, and 9.3 bind to 
subsets of human peripheral T cells (14). Values are expressed as the percentage + standard error of T cells showing reactivity with the 
monoclonal antibody. 

Monoclonal antibody 

Subject* 
L17F12 TlOl DU- 10.2 SKW3-l 9.6 OKT3 A-50 3A1 OKT4 OKT8 9.3 

Humans 97 
Gorillas 8 9 k  3 
Chimpanzees 8 3 +  2 
Orangutant 100 k 0 
Gibbons 86 + 10 
Rhesus monkeys O +  0 
Pig-tailed monkeys 0 k 0 
Stump-tailed Ok 0 

monkeys 
Cebus monkeys O i  0 
Spider monkey11 0 

100 95 95 85 65 30 
9 9 + 1  9 1 2 7  8 4 k 1 2  9 7 2 2  5 3 2  6 4 6 k  9 
9 6 i 4  7 8 + 9  5 9 k  7 9 0 i 4  5 1 +  3 7 2 i  6 

l o o k 0  O + O  9 1 i  9 9 4 i 6  4 2 + 2 2  9 2 i  4 
l o o k 0  9 9 k l  O i  0 1 1 + 3  1 9 i  7 8 7 + 1 1  
l o o k 0  O + O  O i  0 0 1 . 0  6 2 i  7 4 2 i 1 2  
1OOiO O i O  O i  0 6 2 1  5 9 i  1 4 8 i  3 
100i.O O k O  O i  0 O k O  3 5 k  3 6 0 + 1 2  

64 
89 k 11 
7 6 i  8 
80 
65 i 20 

N.D. 
5 9 i  5 
5 0 i  9 

47 L 20 
4 1 

*Three to five animals were studied in each case, except where noted. As controls, lymphocytes from two rabbits were also studied; rabbit lymphocytes did not react 
with any of the monoclonal antibodies. Data on human T cells represent the means for six normal subjects (17). ?Two orangutans were studied for each T cell 
antibody except 9.3, for which only one was studied. $Not done. $But 91 + 5 percent of the Cebus monkey lymphocytes rosetted with sheep 
erythrocytes, IlOne spider monkey was studied. 

orescence and microcytotoxicity (16, 
17). In each assay, background fluores- 
cence was determined by incubation of 
cells with P3 x 63/Ag8 ascitic fluid (con- 
trol murine myeloma protein) and fluo- 
rescein-conjugated antibodies to mouse 
immunoglobulin G.  In every instance 
less than 5 percent of the cells were 
nonspecifically fluorescent. 

All of the primate T lymphocytes that 
we tested rosetted with neuraminidase- 
treated sheep erythrocjltes in percent- 
ages equivalent to those of human T cells 
(81 i 2 percent of lymphocytes). The 
reactivity of gorilla and chimpanzee T 
cells with our panel of reagents was 
identical to that of humans (Table 1). 
Orangutan cells were reactive with 10 of 
the 11 reagents (lacking only the OKT3 
antigen), and gibbon cells reacted with 9 
of the 11 reagents (lacking 3A1 and A-50 
antigens). In contrast, cells of all Old 
World monkey species tested were simi- 
lar and reacted with only 5 of the 11 
human T cell-specific reagents. Antibod- 
ies L17F12, T101, 10.2, OKT3, A-50, 
and 3A1 (antibodies reacting with a ma- 
jority of human peripheral T cells) did 
not react with Old World monkey cells. 
The Old World monkey T cells, in addi- 
tion to having an E-rosette receptor, 
reacted with monoclonal antibodies 
OKT4, OKT8, and 9.3 (antibodies defin- 
ing functional subsets of human periph- 
eral T cells) (8, 18); these cells also 
uniformly reacted with antibody DU- 
SKW3-1, a murine monoclonal antibody 
that precipitates a 65,000-dalton mole- 
cule similar to the molecule detected by 
reagents L17F12, T101, and 10.2 [the 
human analog of the murine Lyt 1 mole- 
cule (lg)]. Either DU-SKW3- 1 binds to 
a different determinant than L17F12, 
T101, and 10.2 do, or it binds to a 
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different 65,000-dalton molecule (20). 
Cells from New World monkeys (spi- 

der and Cebus monkeys) reacted only 
with the E-rosette-receptor antibody 
(9.6) and the antibody to the inducer T 
cell (9.3). Cebus monkey cells also react- 
ed with the pan-T cell antibody DU- 
SKW3-1 (21). 

The study of fossil and biochemical 
data (1-4) suggest a common ancestor 
for chimpanzees, gorillas, and man about 
5 million years ago. In contrast, the 
common ancestor for man, African apes, 
and orangutans is estimated at 8 million 
years, and for man, African apes, orang- 
utans, and gibbons at 10 million years. 
The divergence of Old World monkeys 
and the higher primates is judged to have 
occurred 30 million years ago. Although 
it is generally agreed that New World 
monkeys constitute a lineage separate 
from that of Old World monkeys, Afri- 
can apes, and man, the time of a com- 
mon ancestor is difficult to establish be- 
cause of the lack of fossil data (22). 

Plotting the number of T cell antigens 
absent on T cells of the various primate 

Divergence time (millions of years) 

Fig. 1. The number of determinants of human 
T cell antigens that are not detected on the T 
cells of a particular primate species plotted 
against the estimated time of divergence for 
primate species (2). 

species against the estimated time of 
evolutionary divergence demonstrated a 
correlation (R* = .99), with a constant 
apparent rate of evolution for the T cell 
antigens as a group (slope, 4.17) (Fig. 1) 
(23). 

These data provide additional molecu- 
lar evidence for a relatively recent com- 
mon ancestor for man, chimpanzees, and 
gorillas, and support the existing pro- 
posed ranking of evolutional divergence 
of hominids. Moreover, the high degree 
of conservation of T cell subset antigen 
determinants suggests that these mole- 
cules may have been important in con- 
ferring a selective evolutionary advan- 
tage (24). 
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Developmental Equations for Postural Tremor 

Abstract. Developmental equations for the electroencephalogram have been 
reported previously for normal children and brain disorder has been shown t o  cause 
substantial deviations from this developmental norm. The present report describes 
directly parallel phenomena with regard t o  postural tremor. 

Developmental equations that de- coefficients associated with the P, a, 8, 
scribe electroencephalographic (EEG) and 8 frequency bands taken from the 
changes in children aged 6 to 16 years parieto-occipital, central, temporal, and 
have been reported by John et a1 (1). frontotemporal regions of the brain 
These authors noted that the regression change systematically with age. Data 

Table 1. A statistical analysis of data reported by Marshall (3) on the peak frequency of 
physiological tremor in 287 normal children (in hertz). 

Average Standard 
Age 

Predicted Deviation 
N peak peak from deviation 

of peak (years) frequency frequency prediction 
frequency 

based on 306 U.S. children agreed well 
with data collected on 342 Swedish chil- 
dren. A third group of 91 normal children 
were reported to be quite similar in their 
development to the other two groups of 
normal children (2). Substantial devi- 
ations from this normal developmental 
sequence were then reported for 474 
children "at neurological risk," 143 
learning disabled children, and 163 spe- 
cific learning disabled children (2). Nor- 
mal development is associated with an 
increase in the dominant EEG frequen- 
cy; brain damage or deterioration is as- 
sociated with a lowering of this dominant 
frequency (1). 

The purpose of the study reported 
here was to identify parallel develop- 
mental and pathological changes related 
to postural tremor. The developmental 
equations stem from a reanalysis of pre- 
viously published data on 287 children 
aged 2 to 16 years (3). The data on the 
effects of brain pathology on postural 
tremor come from two previously pub- 
lished studies on adults (4, 5). 

Marshall (3) asked 287 normal chil- 
dren, ranging in age from 2 to 16 years, 
to hold an accelerometer (weighing 65 g 
and measuring 9.5 cm in length and 3.3 
cm in diameter) in the palm of their 
outstretched hand for a brief but unspec- 
ified time. Although the subjects were 
instructed or coached to hold their arm 
as steady as possible, small movements, 
described as physiological tremor, re- 
mained. Marshall calculated the domi- 
nant or peak frequency for each child 
and displayed these data in a figure relat- 
ing tremor frequency to the subject's 
age. Upon reanalyzing Marshall's data, I 
discovered an unreported correlation [r 
(13) = .9433, P < .001] between average 
age and average peak frequency. This 
result clearly establishes an average de- 
velopmental sequence that is well de- 
scribed by Eq. 1. 

Table 1 shows the average peak fre- 
quency and standard deviation associat- 
ed with each age group studied by Mar- 
shall plus the value predicted for that age 
group by Eq. 1. The difference between 
the observed and predicted peak fre- 
quency values is also reported. Both the 
obtained data and the theoretical calcula- 
tions show that the peak frequency slow- 
ly and regularly increases as a function 
of chronological age. The slope of Eq. 1 
reveals that the peak frequency in- 
creases by 0.2612 Hz or about 0.25 Hz 
per year. This developmental sequence 
continues until the adult frequency of 10 
Hz is reached. Equation 1 predicts that 
the 10-Hz peak frequency is reached 
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