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linergic synapses. Thus, choline concen- 
trations comparable to those used in the 
present experiments may occur physio- 
logically and exert effects because of 
choline's activity as a partial nicotinic Multiple Opiate Receptors: Alcohol Selectively Inhibits 
agonist. Binding to Delta Receptors 
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Figure 1 depicts the effect of increas- 
ing concentrations of ethanol on opiate 
receptor binding. The binding of DADL 
was strongly inhibited at concentrations 
at which naltrexone binding was inhibit- 
ed only slightly and dihydromorphine 
binding not at all. In fact, the stimulation 
of dihydromorphine binding shown here 
has been consistently observed, al- 
though we cannot explain why. Binding 
of the putative K receptor ligand ethylke- 
tocyclazocine (1 nM) and the a ligand 
SKF 10,047 (1 nM) was essentially unaf- 
fected by ethanol up to 5 percent, a 
concentration at which the binding of 
DADL (1 nM) was inhibited 70 percent 
(Fig. 1). 

As shown in Fig. 2, inhibitory potency 
increased exponentially with the chain 
length of straight-chain aliphatic alco- 
hols. The median inhibitory concentra- 
tion for inhibition of DADL binding 
ranged from 5 percent (by volume) for 
methanol to 0.2 percent for n-amyl alco- 
hol, which has the longest chain of the 
alcohols tested. Median inhibitory con- 
centrations for opiate alkaloids were 
three to five times higher. 

When membrane preparations were 
exposed to alcohol for 15 minutes at 
37"C, centrifuged to remove the alcohol, 
and washed, the inhibition of binding 
was completely reversed. Scatchard 
analysis of saturation curves represent- 
ing DADL binding in the presence or 
absence of n-butanol yielded linear plots 
in the concentration range 0.5 to 10 nM. 
In two similar experiments with 0.5 per- 
cent n-butanol, inhibition resulted from a 
decrease in binding affinity (4.8 nM for 
control preparations, 11.9 nM for experi- 
mental preparations). There was no sig- 
nificant decrease in the maximum num- 
ber of binding sites (0.11 pmole per milli- 
gram of protein for control preparations 
and 0.10 pmolelmg for experimental 
preparations). 

It is possible, though unlikely, that 
alcohol affects the peptide rather than 
the receptor. The following evidence 
supports a selective effect on the 6 opiate 
receptor. Binding of the enkephalin ana- 
log [3H]F~33-824, reported to be a bet- 
ter ligand for p. than 6 receptors (11), is 
significantly less inhibited by a given 
concentration of alcohol than binding of 
DADL. Thus, binding of FK33-824 (1 
nM) is inhibited 24 * 2.7 percent by n- 
butanol at a concentration (0.5 percent) 
that inhibits naltrexone binding 9 & 1.9 
percent and DADL binding 55 & 1.3 per- 
cent. As shown in Table 1, in membrane 
preparations from toad brain, which we 
have found to contain predominantly p. 
receptors (I2), the inhibition of DADL 
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Table 1. Inhibition of DADL and naltrexone binding by butanol in different tissues reported to 
have different ratios of p. and 6 opiate receptors. The data are percentages of control binding. 
Where standard errors are given the value represents the mean for at least three experiments. 
Where no standard errors are shown the value represents the mean for two experiments. 

, 
Tissue Concentration C3H]DADL [3H]Naltrexone 

of n-butanol (%) (5 nM) (5 nM) 

Rat brain 0.5 

Toad brain 
1.0 

Neuroblastoma cells 0.5 
1 .o 

binding is much less pronounced than in 
rat brain. Perhaps most significantly, in a 
neuroblastoma cell line (N4TGl) report- 
ed to have receptors primarily of the 6 
type (3), inhibition of opiate binding was 
found to be even stronger than that of 
enkephalins. 

The mechanism by which alcohols in- 
hibit opiate binding and, at low concen- 
trations, selectively inhibit 6 receptor 
binding is not known. Aliphatic alcohols 
increase the fluidity of cell membranes 
(13, 14), and the efficacy of this effect is 
greater the longer the chain length of the 
alcohol. This is thought to be related to 
the rise in lipid solubility of alcohols as 
their chain length increases. Changes in 

Alcohol chain length 

Fig. 2. Inhibitory potency of straight-chain 
aliphatic alcohols on [3H]DADL binding as a 
function of chain length. Specific binding of 
DADL (1 nM) was measured in the presence 
of five concentrations of methyl, ethyl, n- 
propyl, n-butyl, and n-amyl alcohols under 
the conditions described in the legend to Fig. 
1. The median inhibitory concentration of 
alcohol was obtained from a linear log-probit 
plot of the data. Each value represents the 
mean for at least two closely similar experi- 
ments. 

membrane fluidity affect the normal 
function of some membrane-bound pro- 
teins (1.5, 16). We suggest, as a working 
hypothesis, that 6 receptors are more 
strongly influenced by changes in mem- 
brane fluidity than p receptors. 

These data strongly support the exis- 
tence of separate p. and 6 receptors. To 
our knowledge this is the first demon- 
stration of selective inhibition of one of 
the postulated classes of opiate receptors 
by a reagent that is not a ligand for the 
receptor. These results should stimulate 
studies on the effects of ethanol ingestion 
on the endogenous opioid system. 

JACOB M. HILLER 
LLOYD M. ANGEL 

ERIC J. SIMON 
Departments of Psychiatry and 
Pharmacology, New York University 
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