er, two alternative explanations exist.
One, which appears unlikely from the
recent work of Parks et al. (28), is that
the unchanged nitrogen oxides enter the
bloodstream and react with hemoglobin
to form a nitrogen oxide-iron complex
(29). Alternatively, our data (30) as well
as the in vivo data of Thomas et al. (9)
show that NO initiates lipid peroxida-
tion even in aqueous systems. Addition
of NO, would produce a lipid-bound
nitro group; however, the hydrogen ab-
straction mechanism suggested here con-
verts NO, to nitrite ions that would be
carried throughout the body, as shown
by Goldstein er al. (27).
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Mechanism of Single-Layer Graphite Oxidation:

Evaluation by Electron Microscopy

Abstract. Etch-decoration reveals that the rate of removal of carbon atoms
exposed at monolayer steps on graphite surfaces depends on the population densiry
of these edge atoms (the rate is higher at a low-densitv surface) and that carbon
removal continues for a prolonged period after the oxvgen supply in the gas phase
has been shut off. The edge carbons are removed by both oxvgen from the gas phase
and oxvgen in the adsorbed oxides which migrate from the neighboring basal carbon

aroms.

The first step in all gas-solid and solid-
catalyzed reactions is the adsorption of
the gaseous molecules on the solid sur-
face. It is known that only on specific
active surface sites can the adsorbed
molecules react to form products. which
may then desorb to the gas phase. This
general class of reaction mechanism is
known as the Langmuir-Hinshelwood
(LH) mechanism, which has been a cor-
nerstone model in catalysis and hetero-
geneous kinetics. The Michaelis-Menten
mechanism for enzymatic reactions is
synonymous with this mechanism. More
recently, information on the mobility of
the adsorbed species on the surface has
been accumulating. A fundamental ques-
tion, consequently, is how the mobile
adsorbed species participates in the reac-
tion. This question has been challenging
enough that numerous indirect evidence
for such a mechanism has been pub-
lished (/). Along this line. we have mea-
sured the rate of removal of carbon at-
oms by oxygen on the monolayer steps
on graphite, which are the active sites.
We have found that the rate of removal.
in atoms per active site per second.
depends to a large extent on the popula-
tion density of the active sites: the rate
declines as the population density of
these sites increases and carbon removal
continues for a prolonged period after
the O, supply in the gas phase has been

0036-8075/81/1023-0437301.00/0 Copyright

cut off. The number of nonactive carbon
sites was much greater than the number
of active sites (by about 10" to 10%). Our
results show that the carbon at an active
site is removed by two mechanisms: (1)
direct reaction with O, in the gas phase
or the LH mechanism and (i) reaction
with the migrating oxygen atoms of the
surface oxides which are first disso-
ciatively chemisorbed on the nonactive
sites. :

The experimental technique consists
of etch-decoration followed by examina-
tion with transmission electron micros-
copy (TEM). The technique. described
elsewhere (2). consists of cleaving single
crystals (natural graphite from Ticonder-
oga. New York) to a thickness of a few
hundred angstroms. etching the graphite
in a gas (in our case, 20 percent O- in
argon at | atm) which expands the sur-
face vacancy to create a pit one atomic
layer deep. decorating the edge of the pit
with gold nuclei, and examining with
TEM. The radius of the pit is proportion-
al to the time of etching. The atoms on
the edge of the pit are the active sites.
From the pit growth rate, we are able to
calcuiate the rate of removal of carbon
atoms per active site.

The reaction with O, starts from the
residual vacancies present on the basal
surface. The density of the natural va-
cancies can be counted as the ring densi-
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ty on the electron micrograph. In count-
ing the ring densities, we examined at
least 200 rings to obtain a statistically
meaningful figure. In about 500 etch-
decorated samples that we have exam-
ined, the vacancy densities ranged from
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Fig. 2 (left). Dependence of the ring size,
which is proportional to the rate of carbon
removal, on ring density. Fig. 3 (right).
Ring radii versus time of flushing in argon
after 10 minutes reaction in 0.2 atm O, (0.8

0.1 to 60 wm™2. Typical results of the
ring growth rate, as the ring size after 20-
minute etching, are shown in Figs. 1 and
2. The three points (A, B, and C) in Fig. 2
correspond to the micrographs in Fig. 1.
Examples of the rates calculated from
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Fig. 1. Typical electron micrographs of the

basal surface of graphite after oxidation for 20
minutes in 20 percent O in argon at 1 atm and
650°C, followed by gold decoration to reveal
the extent of monolayer recession. (A) Ring
density = 8 pm *; (B) ring density = 3
pm % (C) ring density = 1.5 pm 2 (in this
case there was additional flushing in argon
for 10 minutes befure the reaction was
quenched).
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atm argon) at 650°C. Ring density = 1 um~2(V), 10 pm~2 (O), and > 20 pm~2 (0O). Zero time
corresponds to the time when the O, supply is cut off.
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Fig. 2 are 0.6 carbon atoms removed per
carbon atom per second for a vacancy
density of 10 pm~2 and 0.9 carbon atoms
removed per carbon atom per second for
a vacancy density of 1 um™2. The rate
levels off to 0.5 carbon atoms removed
per carbon atom per second for surfaces
with high vacancy densities. Further-
more, carbon removal continues after
the O, is shut off and the crystals are
flushed in argon at the etching tempera-
ture. This phenomenon is more en-
hanced for surfaces with lower vacancy
densities (Fig. 3). The ring growth during
this period shows preferential directions,
which results in noncircular shapes. Re-
action during the flushing period is due
to the surface oxides which migrate on
the basal plane to the edge carbon atoms.
Of the two independent rate processes
that contribute to the reaction between
carbon and oxygen, only the reaction
with the migrated oxides that are first
chemisorbed on the nonactive sites is
influenced by the population density of
the active sites because the nonactive
sites are shared as the collecting sites for
oxides. The contribution by the surface
migration mechanism to the overall rate
can be substantial for the carbon-oxygen
reaction. Furthermore, our new tech-
nique of flushing with an inert gas can
yield values for chemisorption and the
surface diffusion coefficient at elevated
temperatures. For the carbon-oxygen re-
action at 650°C, these values are oxygen
adsorbed on carbon = 0.34 (from 14-
hour flush data) and surface diffusion
coefficient = 5 x 107'2 cm? sec™' for an
initial vacancy density of 1 wm™2; for an
initial vacancy density of 10 um™2, the
corresponding values are 0.06 and 2 X
1072 cm? sec™! (3).
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