
functions as a neuroendocrine conduit 
(12), transporting various peptides made 
in one brain region to sites of action in 
distant brain areas. A possible function 
of vasopressin in CSF is regulating the 
beh~avioral processes of learning and 
memory. This conjecture is based pri- 
marily on studies of the vasopressin- 
deficient Brattleboro rat, which has defi- 
cits in acquisition and retention of infor- 
mation necessary for success in active 
and passive avoidance training (13). The 
deficit in retention can be corrected by 
vasopressin administration, the intraven- 
tricular route of delivery being several 
hundred times more effective than the 
systemic route (14). Also, inactivation of 
endogenous CSF vasopressin by intra- 
ventricular administration of vasopressin 
antiserum to normal rats induces severe 
impairment of memory (15); systemic 
administration of the antiserum elicits no 
behavioral effects despite inducing pro- 
found alterations in water balance. 

An interesting aspect of memory con- 
solidation is evidence that the circadian 
tirr~ekeeping system plays an important 
role in that behavior (16-18). For exam- 
ple, rats manifest a repetitive daily varia- 
tion in retention performance after one- 
trial passive-avoidance training (17). 
Also, disrupting circadian organization 
in the rat results in a long-term loss of 
memory (18). Thus, our finding of a daily 
vasopressin rhythm in mammalian CSF 
provides a potential link between the 
reported effects of CSF vasopressin on 
memory and the circadian character of 
me:mory processes and thus strengthens 
the argument that vasopressin in the 
CSF may function physiologically to 
modulate memory. 
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Toxic Injury to Isolated Hepatocytes Is Not Dependent on 
Extracellular Calcium 

Abstract. Freshly isolated hepatocytes from phenobarbital-treated rats were 
incubated in the presence or absence of extracellular calcium with three differently 
acting liver cell toxins, namely carbon tetrachloride, bromobenzene, and ethylmeth- 
anesulfonate. In the absence of extracellular calcium these three compounds were 
far more toxic to the cells than in its presence. This result is inconsistent with the 
hypothesis that an influx of extracellular calcium is required as the final step in toxic 
liver cell injury. 

Liver cell death and its morphological 
expression as necrosis have been the 
subject of many clinical and experimen- 
tal studies. Since liver cell death may be 
the ultimate result of a number of differ- 
ent hazards in the cell's environment, 
including toxic chemicals, anoxia, and 
viruses, various experimental models 
have been designed to investigate the 
morphological and biochemical changes 
associated with liver cell injury and 
death. As a result, morphological and 
biochemical changes of increasing sever- 
ity have been described and attempts 
have been made to define "a point of no 
return" at which the process becomes 

irreversible (1-3). Moreover, several 
hypotheses have been proposed to ex- 
plain the underlying biochemical lesion 
[for example, see (3)l. One such hypoth- 
esis is that the plasma membrane is the 
primary target in the pathogenesis of 
liver cell death and that the functional 
consequence of this membrane injury is 
a lethal influx of a high concentration of 
Ca2+ ions into the liver cells (4). The 
influx of extracellular Ca2+ has therefore 
been proposed as the final common path- 
way in toxic liver cell death (4, 5). 

Although it has been known for many 
years that calcium accumulates in ne- 
crotic tissues, such accumulations of 
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Ca2+ could always be explained as sim- 
ply a passive equilibration of Ca2+ con- 
centration along a very steep electro- 
chemical gradient, because the extracel- 
Mar Ca2+ concentration is approximate- 
ly 1000 times higher than the cytosolic 
Ca2+ concentration (6). However, recent 
studies involving the use of primary cul- 
tures of adult rat hepatocytes have ap- 
parently shown an absoute requirement 
for extracellular Ca2+ in the killing of 
these cells by a variety of different tox- 
ins, not requiring metabolic activation to 
a proximate or ultimate toxin, such as 
phalloidin and ethylmethanesulfonate 
(EMS) (5, 7). In direct contrast to this 
finding, the results of the present study 
show that extracellular Ca2+ is not re- 
quired for the killing of freshly isolated 
hepatocytes by three well-known liver 
cell toxins, namely carbon tetrachloride 
(a), bromobenzene (2, 9) and EMS (7). 

Suspensions of isolated hepatocytes 
are frequently used for studies on the 
metabolism and toxicity of foreign com- 

pounds (2, 9, 10). The viability of the 
freshly isolated cells is invariably high 
and immediately after isolation the cells 
exclude both trypan blue and reduced 
nicotinamide adenine dinucleotide 
(NADH) (Fig. 1) and contain concentra- 
tions of adenosine triphosphate (ATP), 
nicotinamide adenine dinucleotide phos- 
phate (NADP), reduced NADP 
(NADPH), and glutathione (GSH) simi- 
lar to those observed in the isolated 
perfused liver (11). On incubation of the 
hepatocytes in a balanced salt solution 
containing 2.6 mM Ca2+, for up to 5 
hours, there is a slight decrease in ATP 
and GSH concentrations but no measur- 
able change in the total level of NADP, 
NADPH, or in the NADPHINADP' ra- 
tio. Trypan blue exclusion reveals a 
small decrease, and NADH penetration 
a corresponding increase (Figs 1, a and 
c). However, after 4 hours of incubation 
the hepatocytes are still approximately 
80 percent viable (Figs 1, a and c). More- 
over, since freshly isolated hepatocytes 

Time (hours) 

Fig. 1. Toxic liver cell death is not dependent on extracellular calcium. Isolated hepatocytes 
were prepared from the livers of phenobarbital-treated male Sprague-Dawley rats (200 to 250 g) 
by the method of collagenase perfusion as described (10). Sodium phenobarbital was adminis- 
tered intraperitoneally at a daily dose of 80 mglkg for 3 days in order to induce the microsomal 
monooxygenase enzyme system. The yield of each preparation was 2 x 10' to 4 X 10%ells, as 
measured by counting the final cell suspension in a Buerker chamber. Immediately after 
isolation the cells excluded both trypan blue and NADH (90 to 95 percent). Incubations of 
hepatocytes were performed at 37°C in rotating round-bottom flasks (17) under an atmosphere 
of 95 percent O2 and 6.5 percent C 0 2  at a cell concentration of lo6 cells per milliliter in either 
Ca2'-free (b and d) or normal (2.6 mM Ca2') Krebs-Henseleit buffer, pH 7.4 (a and c) 
supplemented with 25 mM Hepes (N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid). Cell 
viability was assayed by both trypan blue exclusion (a and b) (10) and NADH penetration with 
use of the lactate dehydrogenase latency test (c and d) (17). The amount of cell death in the 
absence (0) and presence of either (A) carbon tetrachloride, (0) bromobenzene, or (V) EMS is 
expressed as the percentage of stained cells (a and b) or as the percentage of cells permeable to 
NADH (c and d). Values represent the means and standard errors offour separate experiments. 

are able to metabolize foreign com- 
pounds at rates comparable to those ob- 
served in vivo or with the isolated per- 
fused liver (12), it is possible to study the 
toxicity of foreign compounds requiring 
metabolic activation to a proximate or 
ultimate toxin, such as carbon tetrachlo- 
ride (8) and bromobenzene (2, 9). This is 
not possible when primary cultures of 
adult rat hepatocytes, maintained in 
complete media, are used as the experi- 
mental model because these cultured he- 
patocytes rapidly lose their ability to 
metabolize foreign compounds (13). We 
have previously described the cell isola- 
tion and incubation procedures and the 
various characteristics of the liver cells 
before and after long-term incubation (9, 
10). 

Both carbon tetrachloride and bromo- 
benzene are well-known hepatotoxins 
requiring metabolic activation in order to 
become cytotoxic (2, 8, 9). Carbon tetra- 
chloride is known to be metabolized by 
the hepatic microsomal monooxygenase 
system to highly reactive free radicals 
which interact with cellular constituents 
and initiate peroxidation of the mem- 
brane lipids (8, 14). This, in turn, alters 
cellular membrane structure and func- 
tion and consequently causes distur- 
bances in electrolyte distribution, swell- 
ing, and the appearance of intracellular 
enzymes in the plasma, which eventually 
leads to cell death (3, 4, 8, 14). 

Bromobenzene produces centrilobular 
liver necrosis when administered in suffi- 
cient doses to laboratory animals (2, 9). 
Hepatocytes isolated from phenobar- 
bital-treated rats metabolize bromoben- 
zene to a reactive intermediate, which 
has been tentatively identified as bromo- 
benzene-3,4-epoxide (15). This metabo- 
lite may subsequently become rear- 
ranged nonenzymatically to yield the 
corresponding phenol, act as a substrate 
for epoxide hydrolase to produce a trans- 
dihydrodiol, or react with GSH to form 
the corresponding conjugate (2, 9). The 
last reaction is the main pathway for 
inactivation of the epoxide. Thus, in the 
absence of GSH, the reactive intermedi- 
ate can accumulate intracellularly and 
interact with various low molecular 
weight and macromolecular nucleophiles 
(2, 9). The final result of these interac- 
tions is cell death. 

Ethylmethanesulphonate is different 
from both carbon tetrachloride and bro- 
mobenzene in that it does not require 
metabolic activation in order to become 
cytotoxic. It is a widely used mutagen 
and its reactivity results in the alkylation 
of many tissue macromolecules includ- 
ing membrane constituents. 

From Fig. 1, a and c, it can be seen 
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that isolated hepatocytes from phenobar- 
bital-treated rats are relatively resistant 
to the toxic effects of carbon tetrachlo- 
ride (1 .O mM), bromobenzene (0.6 mM), 
and EMS (8 mM) for up to 4 hours when 
they are incubated at 37°C in Krebs- 
Htmseleit buffer, pH 7.4, containing 2.6 
rnM ca2+ .  However, when similarly pre- 
pared hepatocytes are incubated at 37°C 
in Ca2+-free Krebs-Henseleit buffer, pH 
7.4, in the presence of either 1.0 mM 
carbon tetrachloride, 0.6 mM bromoben- 
zeme, or 8 mM EMS, approximately 90 
percent of the cells are permeable to 
both NADH and trypan blue after 4 
hours (Fig. 1, b and d), whereas control 
hepatocytes incubated in Ca2+-free 
Krebs-Henseleit buffer alone are still ap- 
proximately 70 percent viable after 4 
hours (Fig. 1, b and d). It therefore 
appears that these three compounds are 
far more toxic to isolated hepatocytes in 
the absence of extracellular Ca2+ than in 
its presence. This result is inconsistent 
with the notion that an influx of extracel- 
lular Ca2+ is required as the final step in 
toxic injury of liver cells caused by car- 
bon tetrachloride, bromobenzene, and 
EMS. Moreover, similar results are ob- 
tained when 0.1 mM EGTA, a highly 
specific Ca2+ chelator (16), is added to 
the: Ca2+-free Krebs-Henseleit buffer, 
pH 7.4. Thus, if carbon tetrachloride, 
bromobenzene, and EMS are toxic to 
isolated liver cells in Ca2+-free buffer 
containing EGTA, it is apparent that the 
toxic liver cell injury caused by these 
compounds, as measured by two well- 
established parameters of liver cell via- 
bility, namely, trypan blue exclusion (10) 
and NADH penetration (13 ,  is not de- 
pendent on extracellular calcium. 

We therefore conclude that the influx 
of extracellular Ca2+ is not the final 
common pathway for the toxic death of 
isolated liver cells. We do not know why 
an influx of extracellular Ca2+ appears to 
be required for the toxic killing of cul- 
tured hepatocytes (5, 7) but not for fresh- 
ly isolated hepatocytes. However, this 
discrepancy may be due to different ef- 
fects of extracellular Ca2+ on attached 
and suspended liver cells. Moreover, our 
findings are still compatible with the 
hypothesis that the plasma membrane is 
a primary target in toxic liver cell injury, 
and that changes in its permeability to 
other ions, such as Na+ and K+, may be 
a crucial part of events that lead to cell 
death. 
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Competition for Dispersal in Ant-Dispersed Plants 

Abstract. Two closely related and coexisting plants (Chenopodiaceae) of the 
Australian arid zone are adapted for seed dispersal by ants. These facultatively 
perennial shrubs persist in saltbush communities largely as a result of highly 
directional dispersal to ant mounds, where conditions are favorable for establish- 
ment and growth. The two species grow predominantly on mounds and compete for 
dispersal to these favorable microhabitats. 

Active seed dispersal by animals is 
characteristic of many land plants and of 
most plants in certain habitats (I). Ecolo- 
gists have speculated that these plants 
compete for dispersal services, but the 
evidence has been inferential. Fruits are 
often superabundant; when unharvested, 
they decline in quality and attractive- 
ness, and many seeds are lost to seed 
predation and decay (2, 3). Differences 
among coexisting species in fruit type 
and fruiting phenology have been inter- 
preted as evolutionary adaptations to 
minimize simultaneous demand for limit- 
ed dispersal agents ( 2 , 4 ) .  We provide the 
first quantitative data showing that com- 
petition for dispersal services affects 
plant population dynamics. 

Myrmecochory is the dispersal of 
plant propagules by ants. In exchange 
for dispersal services, myrmecochorous 
plants provision their diaspores (disper- 
sal units) with ant-attractive food bodies. 
Often, the advantage to the plant is a 
reduction in the rate of parasitkm or the 
intensity of competition as seeds are 
removed from the vicinity of the parent 
(5). Myrmecochores are remarkably 
common in the flora of Australia; an 

estimated 1500 species occur in dry 
heathlands and sclerophyll forests alone 
(6). Our studies (7, 8) suggest that in the 
Australian arid zone, myrmecochory 
functions primarily to position seeds in 
favorable microhabitats for establish- 
ment and growth. We report on investi- 
gations of arid zone myrmecochores in 
two closely related genera, Sclerolaena 
and Dissocarpus [united until recently 
(9) in Bassia (Chenopodiaceae)]. We 
demonstrate that (i) myrmecochores are 
differentially abundant on ant mounds, 
where diaspores are concentrated by the 
foraging activities of ants; (ii) ant 
mounds represent favorable microhabi- 
tats for myrmecochorous and nonmyr- 
mecochorous plants alike; (iii) myrmeco- 
chores are relatively poor competitors 
when growing away from mounds; and 
(iv) mound populations of one myrmeco- 
chore are reduced significantly in the 
presence of a second species of ant- 
dispersed plant. 

Sclerolaena diacantha and Dissocar- 
pus bzj7orus var. bz)7orus are common 
ant-dispersed shrubs in the saltbush 
communities of arid central Australia (7). 
The diaspores of both species consist of 
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