
diate-variety bout (mean score 10. I), but 
the difference was not significant 
(T  = 29, N = 14, P > .05). However, 
the mean responses for individual fe- 
males (over days) were significantly 
higher for eventual variety than for im- 
mediate variety (T = 0, N = 6, P < .05) 
(18) (Fig. ID). Thus it appears that fe- 
male song sparrows prefer eventual vari- 
ety. 

These results demonstrate a substan- 
tial match between the singing behavior 
exhibited by adult male song sparrows 
and the type of song structure and pro- 
gramming that provoke the strongest re- 
sponse from female song sparrows. Fe- 
male song sparrows solicit more strongly 
to conspecific than they do to heterospe- 
cific songs. For both main elements of 
song structure, syllable structure and 
temporal pattern, female song sparrows 
prefer conspecific patterns to heterospe- 
cific ones. Male song sparrows sing 
bouts that contain multiple song types, 
and female song sparrows respond more 
strongly to a sequence of several song 
types than they do to a bout of a single 
song type. Finally, male song sparrows 
order their song types with eventual vari- 
ety, suggesting that females prefer such 
an ordering to immediate variety. The 
match between male behavior and fe- 
male responsiveness should be advanta- 
geous to both sexes; males should bene- 
fit from stimulating 'females to copulate 
with them, and females should benefit 
from responding to and copulating with 
only conspecific males. It remains to be 
determined whether female song spar- 
rows also use individual difference be- 
tween conspecific males in song struc- 
ture and song bout structure as a basis 
for choosing particular males as mates. 

WILLIAM A. SEARCY 
PETER MARLER 
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Opioid Inhibition of Dopamine Release from 
Nervous Tissue of Mytilus edulis and Octopus bimuculutus 

Abstract. Morphine and ~ - ~ l a ~ - ~ e t - e n k e ~ h a l i n  as well as other opioids suppress 
potassium-stimulated release of 3~- labeled dopamine from nervous tissue of two 
marine invertebrates, Mytilus edulis and Octopus bimaculatus. Naloxone reverses 
the inhibitory effects in both species. Potassium-stimulated release of 'H-labeled 
serotonin is not altered by opioids. It is postulated that opiate receptors and their 
endogenous effectors play a prominent role in regulation of transmitter release in 
invertebrates. 

Although the importance of aminergic 
systems in invertebrates has been real- 
ized for some time, the role of biological- 
ly active small peptides in invertebrate 
nervous systems has only recently be- 
come apparent (1). Opioid peptides and 
various narcotic agents increase dopa- 
mine concentrations in certain ganglia of 
the marine mollusk Mytilus edulis (Z), 
the freshwater mollusk Anodonta cyg- 
nea (3), and the land snail Helix pomatia 
(4). This effect, which requires relatively 
low concentrations of the agents, is re- 
versed by naloxone, strongly suggesting 
the involvement of an opiate receptor 
mechanism. A naloxone-reversible influ- 
ence of methionine enkephalin and mor- 
phine on activity of identified single neu- 
rons in H. pomatia has been reported 
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(3 ,  and opiate binding sites have been 
characterized in M. edulis (6), providing 
further indication that opiate systems play 
a role in the molluscan nervous system. 

Opioids specifically and selectively in- 
hibit the release of dopamine (7) and 
norepinephrine (8) as well as other trans- 
mitters (7, 9) in regions of the mammali- 
an central and peripheral nervous sys- 
tems; indeed, this may represent a major 
mode of action of opioid compounds. 
This action may also be directly mediat- 
ed by presynaptically localized opiate 
receptors (10). On the basis of our previ- 
ous studies of the influence of opioids on 
dopamine concentrations in ganglia of 
M. edulis (Z), we have examined directly 
the influence of these substances on do- 
pamine release both in ganglia of M. 
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edulis and in the brain of the cephalopod 
Octopus bimaculatus. The octopus was 
chosen for investigation because of its 
relatively large and highly complex cen- 
tral nervous system (11) and because of 
the high concentration of dopamine and 
other amine transmitters in octopus 
brain (12). These studies demonstrate 
that opioids exert an inhibitory influence 
on transmitter release in invertebrates. 

Ganglia were dissected from M .  edulis 
freshly harvested from subtidal waters in 
Long Island Sound, Northport, New 
York, as previously described (2). Octo- 
pus bimaculatus (250 to 500 g), were 
obtained from Pacific Bio-Marine Labo- 
ratories and kept in artificial sea water 
(ASW, Instant Ocean) at 13°C prior to 
experimentation. Either the supraeso- 
phageal lobes (excluding optic lobes) 
were dissected out as a unit and then 
randomly sliced or the lobes of the brain 
were dissected out individually accord- 
ing to Young (12). Dissections of both M .  
edulis and 0, bimaculatus were carried 
out in ASW in the cold. Tissues were 
then incubated with [3H]dopamine or 
other labeled precursor at 2 2 T ,  washed, 
and transferred to a perfusion chamber 
for exposure to KC1 or drugs (13). 

As shown in Fig. l , 50  mM KC1 caused 
the release of [3H]dopamine from pedal 
ganglia of M. edulis. In the absence of 
drugs the release caused by KC1 was 
approximately 10 percent of the tissue 
content of radioactivity. Addition of 
morphine or D-Ala2-Met-enkephalin 
(DALA) to the superfusing medium at 
the time of the K' application resulted in 
concentration-dependent inhibition of 
the evoked release of dopamine. Essen- 
tially complete inhibition of K+-evoked 
release was achieved with 5 pM concen- 
trations of either agent. Superfusion with 
naloxone produced a concentration-de- 
pendent reversal or prevention of the 
effects of morphine and DALA (Table 1). 
Naloxone alone at 10 pM to 100 pM had 
no effect on spontaneous of K+-evoked 
release of dopamine. In other studies 
dextrorphan did not affect the process in 
any observable manner at concentra- 
tions up to 40 pM. However, etorphine 
and P-endorphin each caused complete 
inhibition at 1 p,M, and these effects 
were also reversed by naloxone in a 
concentration-dependent manner (data 
not shown). 

In addition to the pedal ganglion, the 
other ganglia of M ,  edulis were also 
influenced by opioids. Morphine at 5 pM 
inhibited K+-evoked dopamine release 
from cerebral and visceral ganglia by 80 
and 90 percent, respectively. DALA also 
inhibited release from cerebral and vis- 

50 mM KC1 
Fig. 1 .  Inhibition of Kf -stimu- 
lated release of ['Hldopamine 
by (a) morphine and (b) DALA 
(D-Ala2-Met-enkephalin) In 
the pedal ganglion of M .  edu- 

rn lis. Ganglia were incubated at 
2.s 6 - 22°C for 30 minutes in 1 ml of 

ASW containing 0.1 percent 
ascorb~c acid and ('Hjdopa- 
mine (0.7 x lo6 dislmin; spe- 

20 40 60 20 40 60 cific activity, 35.6 Cilmmole) 
(New England Nuclear) w ~ t h  

Time (mrnutes) constant shaking. After being 
incubated, the ganglia were washed twice in 2 ml of ASW and then each ganglion (average wet 
weight, 1.8 mg) was transferred to a Plexiglas perfusion chamber containing 2 ml of ASW. An 
average of 3200 countlmin was present in the ganglion at the start of the superfusion. A rabbit 
four-channel peristalt~c pump (Rainm) maintamed the Row rate at 1 m115 min to an inflow 
opening at the bottom of the chamber. The perfusing solution was altered at the desired 
intervals by manually transporting the inflow tubes to the appropriate beaker. The superfusate 
was collected from an outflow opening near the rim of the chamber with one superfusate 
fraction collected every 5 minutes. Ganglia were first superfused with ASW for 30 minutes. 
Then, for the next 15 minutes ganglia were perfused with ASW containing 50 mM KC1 alone 
(control) or together with drug (morphine or DALA). Finally, the ganglia were again perfused 
with ASW for the remainder of the experiment. Radioactivity of the superfusate solutions was 
determined by liquid scintillation spectrometry. The values shown represent the percentage of 
the total radioactivity in the ganglion that was released during the 5-minute period ending at the 
time indicated. Each value is the mean of five separate experiments. Symbols: x, control; 0 ,  5 
p,M morphine; m, 1 p,M morphine; 0, 5 p,M DALA; and 0, 1 p,M DALA. The standard error of 
the mean was less than t 1.0 percent for all values. 

Time (minutes) 

Fig. 2. Potassium-stimulated release of t3H]dopamine in brain of 0. bimaculatus. Inhibition by 
(a) morphine and (b to e) DALA in slices of supraesophageal lobe tissue (a and b) and of 
subdissected (c) vertical, (d) basal, and (e) frontal lobes of brain. Experimental details were as 
described in the legend to Fig. 1 and in the text with the following modifications. The tissue 
slices (5 to 15 mg, wet weight) were incubated with [3H]dopamine (2 x lo6 dislmin; specific 
activity, 40.7 Cilmmole) in 1 ml of ASW. An average of 10,300 countlmin was present in the 
combined (a and b) supraesophageal lobe tissue and 19,500, 7,700, and 12,900 countlmin in the 
(c) vertical, (d) basal, and (e) frontal lobes, respectively, at the start of the superfusion. The flow 
rate through the perfusion chamber was 1 m113 min and the superfusate fractions were collected 
every 3 minutes. Brain tissue was first superfused with ASW for 15 minutes, then with 50 mM 
KC1 alone or with drugs (5) for 9 minutes and then again with ASW for the remainder of the 
time. Values represent means of three to five separate experiments. Symbols: x, control; 0, 25 
p,M morphine; @, 25 )LM morphine plus 50 p,M naloxone; A ,  10 )LM DALA; A, 10 p,M DALA 
plus 50 )LM naloxone; and V, 1 )LM DALA. The standard error of the mean was less than 21.5 
percent for all values. 
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ceral ganglia and naloxone antagonized 
this inhibition (Table 1). 

In brain of 0, bimaculatus, KC1 pro- 
duced a marked stimulation of [3~]dopa-  
mine release (Fig. 2). Opioid compounds 
inhibited this release, with complete sup- 
pression by 10 pM morphine (Fig. 2a) or 
DALA (Fig. 2b). Superfusion with nal- 
oxone completely reversed the effects of 
morphine and DALA, again demonstrat- 
ing the reversibility and specificity of the 
opioid action. The opioids were found to 
be inhibitory not only in brain tissue 
comprising all of the supraesophageal 
lobes, but also in separately incubated 
vertical (Fig. 2c), basal (Fig. 2d), and 
frontal lobe (Fig. 2e) tissue. 

In contrast to the above results with 
[3H]dopamine, opioids did not alter K+- 
evoked release of radioactivity from M.  
edulis ganglia previously incubated with 
[3H]serotonin. Thus, when tested at con- 
centrations capable of completely inhibit- 
ing [3~]dopamine release, morphine, 
DALA, etorphine, and P-endorphin were 
each completely ineffective in inhibiting 
[3H]serotonin release. In studies of 0. 
bimaculatus, 10 pM DALA was also en- 
tirely without effect on K+-evoked release 
of [3~lserotonin. 

These experiments indicate that opi- 
oids can exert a profound inhibitory in- 
fluence on K+-evoked [ ' ~ l d o ~ a m i n e  re- 
lease from neuronal tissue in the two 
marine invertebrates examined. The 
pharmacological characteristics of the 
response, including reversal by naloxone 
and inactivity of dextrorphan, strongly 
suggest that opiate receptors mediate the 
response. Also, the sensitivity to opioid 
compounds is similar to that reported for 
inhibition of transmitter release from 
mammalian nervous tissue incubated in 
vitro under similar conditions (7, 9). It 
appears that essentially all neurons capa- 
ble of K+-evoked dopamine release in 
the invertebrate tissues studied are sen- 
sitive to the opioid compounds. While 
the specific neuronal population accu- 
mulating and releasing [3H]dopamine re- 
mains to be established, it seems likely 
that a major component of this response 
involves dopaminergic neurons. Thus, 
release of [3~]serotonin was not affected 
by opioids. Also, in other studies not 
presented here [3H]norepinephrine re- 
lease was not affected by opioids in the 
cerebral ganglia and was only partially 
inhibited by even high concentrations of 
opioids in pedal and visceral ganglia of 
M. edulis. It seems likely that the inhibi- 
tion of dopamine release by opioids may 
at least in part account for the previously 
reported increases in dopamine levels in 
various invertebrates after opioid admin- 
istration ( 2 4 ,  6). 

Table 1. Blockade by naloxone of opioid 
inhibition of K*-evoked dopamine release in 
ganglia of M. edulis. The experimental condi- 
tions were as described in the legend to Fig. 1 
and in the text. Each value is the mean offour 
separate experiments. The standard error of 
the mean was k 3  percent or less for all val- 
ues. 

Drug 
additions 

Release 
(% of 

control) 

Pedal ganglion 
None (control) (100) 
Morphine (5 p1M) 4 

Plus naloxone (8 p1M) 4 
Plus naloxone (14 pM) 22 
Plus naloxone (22 pM) 50 
Plus naloxone (30 pM) 68 
Plus naloxone (40 pM) 99 

DALA (5 pM) 5 
Plus naloxone (8 p1M) 13 
Plus naloxone (14 pM) 35 
Plus naloxone (18 KM) 53 
Plus naloxone (22 pM) 67 
Plus naloxone (27 pM) 98 

Cerebral ganglion 
None (control) (1 00) 
DALA (5 pM) 10 

Plus naloxone (10 pM) 64 

Visceral ganglion 
None (control) (100) 
DALA (5 KM) 9 

Plus naloxone (10 pM) 62 

Thus, dopamine release in M. edulis 
and 0, bimaculatus appears to be influ- 
enced by opiate alkaloids (morphine) as 
well as by both small (enkephalin) and 
large (endorphin) peptides. While this 
provides no strong indication as to the 
possible chemical nature of endogenous 
opioid substances in the invertebrate tis- 
sues studied, a recent report (14) indi- 
cates the presence of methionine en- 
kephalin-like immunoreactivity in a 
neurophil layer in the vena cava of Octo- 
pus vulgaris. The present study suggests 
that the octopus and mussel contain in 
their nervous systems a fairly widely 
distributed opiate system that may re- 
semble in many respects that present in 
mammals. The present study also indi- 
cates the involvement of opiates in pre- 
synaptic release mechanisms in inverte- 
brates. Although transmitter release has 
been extensively utilized as a means for 
elucidating relations between transmitter 
systems in vertebrates, modulation of 
the release of one transmitter by another 
transmitter in invertebrates has not, to 
our knowledge, previously been report- 
ed. The occurrence of opiate systems in 
invertebrate phyla other than Mollusca is 
suggested by the presence of opiate bind- 
ing sites in Drosophila heads and of 
enkephalin- and endorphin-like immuno- 
reactivity in earthworm neurons (15). 
The finding that opioids modulate dopa- 

minergic systems in invertebrates may' 
be important for our further understand- 
ing of the functional roles of each of 
these systems in invertebrates as well as 
in the evolution of transmitter relation- 
ships. 
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