
that underlie the observed correlations 
should contribute to our understanding 
of the metastatic process. 
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The in vitro Classical Conditioning of the Gill Withdrawal 
Reflex of Aplysia californica 

Abstract. Associative learning has been demonstrated in a reduced siphon, 
mantle, gill, and abdominal ganglion preparation of Aplysia. The preparations 
learned to respond to a previously neutral stimulus as a consequence of training in a 
classical conditioning paradigm. Backward conditioning, presentation of the condi- 
tioned stimulus alone, or presentation of the unconditioned stimulus at some random 
interval after presentation of the conditioned stimulus failed to produce condition- 
ing. This model system can be used to study the neural mechanisms underlying 
associative learning. 

If simple model systems such as the 
well-studied Aplysia preparation (I) ex- 
hibit associative learning (2), the neuro- 
nal mechanisms underlying learned be- 
havior may be analyzed. Already much 
of our understanding of the neuronal 
mechanisms underlying two types of 

Fig. 1 .  Data from a 
preparation in the ex- 
perimental forward 
conditioning group. 
(A) Trial 1. The CS 
[light (L)] was pre- 
sented to the prepara- 
tion on trial I ;  it 
evoked a siphon with- 
drawal response 
(SWR), but did not 
evoke a gill withdraw- 
al reflex (GWR). The 
CS is indicated by a 
bar under the trac- 
ings. (B) Trial 2. The 
first trial on which the 
CS was paired with 
the UCS [tactile stim- 
ulus (T)]. The CS 
evoked only an SWR. 
The UCS, however, 
evoked a large GWR 
as well as an SWR. 
The GWR evoked by 
the UCS did not 
readily habituate. (C) 
Trial 25. The CS 
evoked not only an 
SWR but also a small 
GWR (arrow). (D) 

A 

SWR 

GWR- 

nonassociative learning-habituation 
and sensitization-have been obtained 
from the Aplysia model system (3). Al- 
though it has been ditlicult in the past to 
demonstrate associative learning in 
Aplysia ( 4 ) ,  associative learning has re- 
cently been conclusively demonstrated 

Trial 40. (E) Trial 60. 
The GWR evoked by the UCS is as large as it was on trial 2 (B). (F) Trial 61. Only the CS was 
presented, and it evoked a large GWR. (G) Trial 63. Only the CS was present. The CS still 
evoked the GWR but its amplitude was smaller than it was on trial 61. (H) Trial 65. CS alone. It 
no longer evoked a GWR. Presentation of the UCS also led to sensitization of the SWR. 

1516 0036-807518110626-1516$00.5010 Copyright O 1981 AAAS SCIENCE, VOL. 212, 26 JUNE 1981 



G W R  - 

- 

Fig. 2 (left). Representative preparation to which only the CS was pi.esented. (A) Trid 1 ,  (B) trial 20, (C) trial 35, (D) trial 65,  and (E) trial 80. The 
SWR evoked by the CS habituated; even after 80 presentations of the CS, it did not evoke a GWR. Fig. 3 (right). Representative preparation 
from the backward conditioning group. (A) Trial 1 and (B) trial 2 .  The UCS preceded the CS and evoked a GWR and an SWR; the CS evoked only 
the SWR. (C) Trial 40, (D) trial 70, and (E) trial 80. In none of the backward conditioning preparations did the CS ever evoke a GWR even after 
100 trials. 

in intact molluscan preparations such as 
Pleurobranchaea (3, Limax (6), and 
now Aplysia (7). Since the neural circuits 
that mediate the conditioned behaviors 
in these animals have not been complete- 
ly elaborated, what is required is an in 
vitro preparation that exhibits true asso- 
ciative learning. We have therefore fo- 
cused our attention on probably the 
most-studied model system: the siphon, 
mantle, gill, and abdominal ganglion 
preparation of Aplysia californica. We 
now report that the gill withdrawal reflex 
(GWR) in this in vitro preparation can be 
classically conditiotled. Thus, this sys- 
tem can now be used to study the neu- 
ral mechanisms underlying associative 
learning, just as it has previously been 
used to study the mechanisms underly- 
ing nonassociative learning. 

Twenty-five A.  californica (150 to 250 
g; Pacific Biomarine) were divided into 
four groups: experimental classical con- 
ditioning (N = 10); backward condition- 
ing control (N = 5); conditioning stimu- 
lus (CS) alone (N = 5); random presen- 
tation control (N = 5) (8). The in vitro 
preparation consisted of the siphon, 
mantle, gill, and abdominal ganglion and 
has been described in great detail else- 
where (9). The siphon, branchial, ctenid- 
ial, and pericardial nerves were left in- 
tact; all other nerves and connectives 
were severed. 

The CS was a 6-second light (photic) 
stimulus from 6-V microscope lamp, 
which illuminated only the siphon. The 
CS evoked only siphon withdrawal and 
not a GWR. The siphon response to the 
light is mediated by photoreceptors in 
the siphon (10). The unconditioned stim- 
ulus (UCS) consisted of a train (six per 
second for 1 second) of tactile stimuli 
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Fig. 4. Representative preparation from the 
random presentation group. (A) Trial 1, (B) 
trial 25, (C) trial 35, (D) trial 50, (E) trial 80, 
(F) The GWR evoked by the UCS between 
trials 24 and 25. 

(1.2 g) applied to the gill by the "tap- 
per" (11). The UCS always evoked a 
GWR, which did hot readily habituate. 

Trials occurred once every 5 minutes 
for at least 80 trials. In the classical 
conditioning group, the CS was present- 
ed and followed after 5 seconds by the 
UCS. The stimuli were terminated at the 
same time. In the CS-alone control 
group, the CS was presented alone. Ih 
the backward conditioning control 
group, the UCS was followed after 5 
seconds by the C S .  In the random con- 
trol group, the CS was presented once 
every 5 minutes, and at a random time 
during that interval, the UCS was pre- 
sented. A microprocessor system con- 
trolled the presentation of the stimuli to 
the preparation. 

In the experimental classical condi- 
tioning group, the CS initially evoked 
only a siphon withdrawal response. 
However, after the CS and the UCS 
were paired, the CS evoked the GWR 
(which had initially been evoked only by 
the UCS) in seven of ten preparations by 
trial 25 (Fig. 1). 

GWR 

In order to demonstrate that this was a 
true example of associative learning and 
not of nonassociative learning, a series 
of control experiments were performed. 
In the CS-alone control group, even after 
80 trials the CS did not evoke the GWR. 
Indeed, the only change that occurred 
was habituation of the' siphon withdrawal 
response (Fig. 2). In the backward condi- 
tioning group, the CS did not evoke the 
GWR (Fig. 3). Finally, in the random 
presentation group, the CS did not come 
to evoke a GWR even after 80 trials 
(Fig. 4). Thus, according to the criteria 
developed for demonstrating associative 
learning in mammals set out by Rescola 
(8), associative learning has been demon- 
strated in the in vitro, Aplysia siphon, 
mantle, gill, and abdominal ganglion 
preparation. 

No systematic study has yet been at- 
tempted to determine the rate of extinc- 
tion of the conditioned response, but it 
does seem to take kt least five unpaired 
trials (Fig. 1, F to H). No effort has yet 
been made to show more rapid learning 
after extinction. We have also not at- 



tempted to determine how long the learn- 
ing would persist in this preparation. 

In naive preparations, the presentation 

Immunization of Baboons With Schistosoma mansoni Cercariae 
Attenuated by Gamma Irradiation 

of the CS does not normally evoke activ- 
ity in gill motor neurons L7 and LDG, 
(10). However, it may be that with classi- 

Abstract. Studies on the eficacy of a vaccine against schistosomiasis in young 
baboons (Papio anubis) disclosed that immunization with Schistosoma mansoni 
cercariae attenuated by gamma irradiation induced significant protection aguinst 
subsequent infection with normal, viable S. mansoni cercariae. Such immunizution 
resulted in reduced worm burdens (70 percent) and egg excretion rates (82 percent). 
These results support immunization as a potential method for schistosomiasis 

cal conditioning the CS will evoke activi- 
ty in these neurons. If so, a neural corre- 
late of associative learning can be exam- 
ined. 

We have shown for what we believe to 
be the first time that a well-studied in 
vitro model system has the capacity for 
associative learning. All the advantages 

control. 

The most promising vaccines against 
schistosomiasis have been prepared with 
gamma-irradiated schistosome cercariae 
(1-5). Recently, however, Taylor et al. 
(6) reported that immunization with 
Schistosoma mansoni cercariae attenu- 
ated with low levels of irradiation (2.1, 

2.4, or 6.0 kilorads) failed to induce 
significant resistance in baboons subse- 
quently challenged with normal, viable 
S. mansoni cercariae. Schistosomiasis in 

that the Aplysia siphon, mantle, gill, and 
abdominal ganglion preparation has had 
for the study of nonassociative adaptive the baboon is a chronic disease, as it is in 

man (77, and if a vaccine cannot be 
demonstrated to be effective in the ba- 
boon model, it is unlikely to be success- 

behaviors, such as habituation and sensi- 
tization, can now be used to study the 
neural mechanisms underlying associa- 
tive learning. ful in man. 

The present study was conducted to 
determine whether attenuation of cercar- 
iae with high doses of ionizing radiation 
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might yield an effective vaccine; such a 
vaccine had proved effective in NIH/ 
Nmri CV mice (5). Nineteen young (6 to 
8 kg) baboons (Papio anubis) from Ken- 
ya were used for the experiments. They 
were first subjected to three stool exami- 
nations (8) and to screening tests for 
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Cercariae of S.  mansoni (Puerto Rican 
strain) shed from Biomphalaria glabrata 
snails were attenuated (10) and used for received the challenge dose. 

Fig. 2. Comparison of 
the worm burdens of 
nine immunized (0 
baboons and ten non- 
immunized (C) ba- 
boons challenged 
with 235 r 22 normal 
S. mansoni cercariae. 
The open bars repre- 
sent the mean ( 2  
standard deviation) 
worm burdens, and 
the shaded bars, the 
percentage reduction 
of the burdens calcu- 
lated according to the 
same formula as that 
in the legend for Fig. 
I .  
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