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Metabolic Mapping of Functional Activity in Human 
Subjects with the [18~]~luorodeoxyglucose Technique 

Abstract. The 2-['8~]fIuoro-2-deoxy-~-g~ucose technique was used to measure 
regional cerebral glucose utilization by human subjects during functional activation. 
Normal male volunteers subjected to one or more sensory stimuli (tactile, visual, or 
auditory) exhibited focal increases in glucose metabolism in response to the 
stimulus. Unilateral visual hemifield stimulation caused the contralateral striate 
cortex to become more metabolically active than the striate cortex ipsilateral to the 
stimulated hemifield. Similarly, stroking the Jingers and hand of one arm with a 
brush produced an increase in metabolism in the contralateral postcentral gyrus, 
compared with the homologous ipsilateral region. The auditory stimulus, which 
consisted of a monaurally presented factual story caused an increase in glucose 
metabolism in the auditory cortex in the hemisphere contralateral to the stimulated 
ear. These results demonstrate that the technique is capable of providing functional 
maps in vivo related to both body region and submodality of sensory information in 
the human brain. 

Using the recently developed 2-["~]- 
fluoro-2-deoxy-D-glucose (FDG) tech- 
nique (I) for measuring local cerebral 
glucose metabolism we have determined 
which areas of the brain are activated by 
a specific sensory stimulus, thus en- 
abling brain function to be mapped in 
vivo. The classical techniques for mea- 
suring human cerebral metabolism (2) do 
not provide regional data. We have now 
measured local cerebral metabolic rates 
for glucose in a series of volunteers 
subjected to a variety of specific sensory 
stimuli (3). 

We measured the regional brain ac- 
tivity of both FDG and 2-[18F]fluoro-2- 
deoxy-D-glucose-6-phosphate (FDG6P) 
with position emission transaxial tomo- 
graphs [PETT I11 and PETT V (4-771 and 
determined the arterial time course of 

"F and glucose from arterial blood sam- 
ples drawn after the FDG injection. With 
these data and knowledge of certain con- 
stants of the FDG model, we calculated 
the metabolic rate of glucose in various 
regions of the brain (I ,  la ) .  

Twenty-seven healthy men (20 to 28 
years old) were subjects in the experi- 
ment. After radial artery catheterization 
under local anesthesia, each was made 
comfortable in the tomograph, and the 
head was secured with a foam head 
restraint. The head was extended to 
make the scan plane parallel to the orbit- 
al-meatal (OM) line defined as the plane 
through the lateral canthus and the exter- 
nal auditory meatus. Each volunteer was 
subjected to a tactile, a visual, or an 
auditory stimulus (8). 

The tactile stimulus consisted of rapid 
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but light stroking (2 to 3 Hz) of the volar 
and dorsal surface of the fingers and 
hand of one arm (left, N = 2; right, 
N = 3) with a hand-held brush, which 
was just stiff enough to cause an appre- 
ciable stimulus without causing any dis- 
comfort. Subjects were blindfolded to 
eliminate visual input and wore earplugs 
to minimize auditory input. 

In the visual study, either the left 
(N = 4) or right (N = 6) visual hemi- 
field was stimulated so as to ensure only 
hemifield stimulation (9). The stimulus 
consisted of a well-illuminated, slowly 
moving, high-contrast black-and-white 
pattern of small lines at various orienta- 
tions as well as abstract color images 
presented into one visual hemifield. The 
subjects wore earplugs. 

The auditory system was studied in six 
subjects with normal hearing (10) who 
listened to a tape-recorded factual story 
presented through earphones to only one 
ear (left ear, N = 3; right ear, N = 3) 
(11). Attentiveness to the story was as- 
sessed by testing the subject's recall. 
These subjects were also blindfolded. 

Six subjects that were blindfolded and 
wore earplugs acted as controls for all 
the studies. 

Section scans were started 30 minutes 
after the FDG injection (12). Each scan 
took 10 to 14 minutes, depending on the 
count rate, and six to eight scans were 
obtained at 1-cm levels through the re- 
gion of interest of the brain. Quantifica- 
tion of metabolic rates (13) was per- 
formed as discussed by Reivech et al. 
(I). 

The somatosensory input caused the 
postcentral gyrus contralateral to the 
stimulus to become metabolically more 
active (mean ? standard deviation, 9 i 
10.2 percent) than the homologous area 
in the ipsilateral cortex (Fig. 1). This was 
not significantly different from the 
controls [ l  i 6.8 percent, t(9) = 1.5, 
P > .I]. The nonsignificance is due to 
the large variance in the control subjects 
at the level of the postcentral gyrus. 

The visual stimulus caused the visual 
cortex contralateral to the stimulated he- 
mifield to become 8 ? 3.0 percent more 
active that the ipsilateral visual cortex 
(Fig. 2). The asymmetry is significant in 
comparison with the controls [t(14) = 

4.06, P < .01], who showed a left-right 
asymmetry of only 0.5 i 3.0 percent. 

The monaurally presented auditory 
stimulation elevated the metabolic rate 
in the temporal cortex contralateral to 
the stimulated ear (Fig. 3). This cortex 
had a metabolic rate of 7 ? 2.5 percent 
higher than the ipsilateral temporal cor- 
tex. This asymmetry is significant in 
comparison with the controls [t(8) 
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= 6.02, P < .001], who showed a left- attempting to quantitate regional cere- with reference to agroup of unstimulated 
right asymmetry of only 1 + 2 per- bra1 glucose metabolism by emission to- control subjects as well as with regard to 
cent. mography (14). To minimize the effects the hemispheric differencs within a par- 

There are various sources of error in of these errors, we analyzed our data ticular scan of each subject. In six unsti- 

Fig. 1. Quantitative emission tomographic images of the brains of normal volunteer subjects obtained during somatosensory stimulation. Bright 
areas correspond to regions with a high uptake of FDG and hence a high cerebral metabolic rate for glucose, while darker areas represent lower 
metabolic rates. The sections are parallel to the OM plane and are indicated in centimeters above it. (A) Schematic of a horizontal section through 
the brain at OM + 9 with the hand representation indicated in black. (B) Horizontal section (OM + 9) through the brain of an unstimulated 
subject. The symmetry of labeling indicates approximately equal glucose metabolism for both hemispheres. (C)  Scan from a subject in which the 
fingers and hand of the left arm are stroked with a brush. Activity in the right cortex including the postcentral gyms (arrow) was increased 
compared with that in the left cortex. Glucose metabolism in the right postcentral gyrus in this subject is I5 percent greater than in the 
homologous area in the right hemisphere. In a subject in which the right fingers and hand were stimulated (D), a section scan at OM + 9 shows 
that glucose metabolism in the left hemisphere including the postcentral gyrus (arrow) was 12 percent higher than in a homologous area on the 
right side. An extensive area of the cortex, of which the postcentral gyrus is only a part, was activated by the stimulus. 

Fig. 2. Images of the brains of subjects stimulated visually. A dotted line defines the midline of each image. (A) Schematic of the horizontal 
section through the brain at OM + 4 with the striate cortex indicated in black. In a blindfolded, visually unstimulated subject, the visual cortex of 
the occipital pole is symmetrical (B), whereas the left visual hemifield stimulation causes asymmetrical glucose metabolism, with the right striate 
cortex 25 to 30 percent more active than the left (C). Stimulation of the right visual hemifield causes this pattern to reverse, with the left striate 
cortex having a metabolic rate 18 percent greater than a homologous area in the right hemisphere (D). 

Fig. 3. Emission tomographs of the brains of subjects listening to a factual story with only one ear. (A) Primary auditory cortex schematically 
indicated in black at OM + 4. (B) Unstimulated control subject with symmetrical temporal cortices. Monaural auditory stimulation resulted in 
metabolic rate increases in the temporal cortex contralateral to the stimulated ear. (C) Left ear stimulated. (D) Right ear stimulated. The region of 
activation was also more extensive than merely the primary auditory cortex (arrow in C). 
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mulated control subjects, the mean side- 
to-side difference in cerebral metabolic 
rate for glucose in any region examined 
did not exceed 4 percent except in the 
postcentral gyrus, which in two control 
subjects exhibited an asymmetry of 10 to 
12 percent. 

These studies demonstrate the region- 
al effects of functional activity on cere- 
bral glucose metabolism in humans. Un- 
til now, almost all data describing the 
regional response of the brain to sensory 
stimulation has been obtained by mea- 
suring regional cerebral blood flow (15). 
The technique for the measurement of 
blood flow, however, provides only an 
estimate in a core of tissue and not in 
localized cerebral structures throughout 
the brain. 

Little information is available con- 
cerning the function and anatomical or- 
ganization of the somatic sensory cere- 
bral cortices of humans (16). Unlike our 
studies of normal human subjects, earlier 
investigations were undertaken on pa- 
tients undergoing neurosurgical proce- 
dures. Localization of asymmetrical 
FDG labeling at  8 and 9 cm above the 
OM plane ( O M  + 8 and OM + 9), in- 
cluding the postcentral gyrus, after vig- 
orous unilateral brush stroking of the 
hand and fingers, is in agreement with 
topographical maps of this gyrus (16) as  
well as  with other functional studies (17). 
Although more extensive areas than the 
postcentral gyrus are activted in our 
studies, more ventral portions of the 
postcentral gyrus (presumptive face and 
lip area) were not asymmetrically labeled 
(18). 

The left visual hemifield is re~resen ted  
in the calcarine cortex of the right hemi- 
sphere and the right hemifield in the left 
hemisphere (19). We have shown in- 
creased glucose utilization in the calcar- 
ine cortex contralateral to the visual field 
stimulated by a patterned light stimulus. 

The results of the auditory portion of 
this study, in which the temporal cortex 
contralateral to the stimulated ear be- 
come more metabolically active than the 
ipsilateral cortex, are consistent with 
data suggesting the predominance of the 
crossed pathways in the human auditory 
system (20). Furthermore, our metabolic 
data are in agreement with neurophysio- 
logic studies in animals (21). Normative 
data that can be provided by the FDG 
method are essential in interpreting stud- 
ies of the diseased central nervous sys- 
tem and subsequent neural plasticity. 

Note added in proof: The local meta- 
bolic activity of the human brain during 
visual stimulation has recently been in- 
vestigated through the use of the ECAT 
tomograph (22). The investigators show 

that the increase in metabolic rate in the 
visual cortex depends heavily on the 
complexity of the visual stimulation, 
with a complex scene producing a 60 
percent increase in glucose metabolism 
in the primary visual cortex. 
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