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Table 1. Orbital elements for six small satellites of Saturn; epoch 244 4513.5 (1 October 1980, 0 hours Ephemeris Time). 

Param- 
eter* 

n 518.236 k 0.01 518.490 i 0.01 131.43 2 0.02 572.77 & 0.02 587.28 ? 0.02 598.08 & 0.05 
* Symbols: a ,  semimajor axis; e ,  eccentricity; A,  longitude at epoch; n, mean motion (degrees per day). Other symbols are defined in the text, t Computed by using 
n and J2  (9) ;  uncertainties in a are essentially represented by the error in n. t The errors in these parameters for 198036, 1980S26, 1980S27, and 1980S28 are 
currently so large as to make the values essentially meaningless. 

where fl is the angle (at epoch) to the 
orbit's ascending node on Saturn's equa- 
tor and i, is the longitude of periapse 
(also at epoch), both measured from Sat- 
urn's autumnal equinox, and i is the 
inclination. The longitude at epoch is 
also referred to the autumnal equinox. 

The dynamic model for all satellites is 
a Keplerian ellipse whose apse and node 
precess under the influences of the cen- 
tral-body harmonics. No attempt was 
made to model resonance libration 
terms. The pole and the gravitational 
harmonics J2 and J4 of Saturn are from 
(9). In computing the nodal and apsidal 
rates it was assumed that the dominant 
effects were due to J2 and J4. 

The uncertainty associated with each 
parameter is an estimate of the real er- 
ror, not merely a formal statistic. Over 
the observing interval, the camera reso- 
lution increased from - 900 km per pixel 
(10) 75 days from Saturn to - 50 km per 
pixel in the last pictures taken 3 days 
before encounter. In general, the root- 
mean-square (RMS) fit was - 0.5 pixel 
over each satellite's recorded interval, 
except for 1980828, for which the eight 
observations over 6 days were fit to - 1 
pixel RMS. Approximately 20 observa- 
tions were used for both 1980826 and 
1980827, and 40 for both 198081 and 
198083. 

In evaluating eccentricity and incli- 
nation, the largest source of error is 
the difficulty of making useful measure- 
ments when the satellites are in transit 
or approaching transit. At these times, 
particularly for 1980826, 1980827, and 
1980828, it is difficult to separate the 
image of the satellite from the heavily 
exposed image of the bright rings; with 
further processing, we hope to be able to 
include such data in future analyses. 

The orbital elements for the six satel- 
lites are given in Table 1. It should be 
noted that these elements are for osculat- 
ing orbits at the epoch of the observa- 
tions. This is especially important when 
considering 1980s 1 and 198083, which 

periodically exchange orbits ( I l ) ,  and 
198086, which moves about the leading 
triangular libration point of Dione. 

Satellites 1980826 and 1980827 are the 
outer and inner "shepherding" satellites 
that stabilize Saturn's F ring (3). We call 
attention to the fact that 1980826 is itself 
stabilized by a 3:2 resonance with Mi- 
mas, which prevents the satellite-ring 
particle interaction from forcing 1980826 
outward. 
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Infrared Observations of the Saturnian System from Voyager 1 

Abstract. During the passage of Voyager 1 through the Saturn system, the infrared 
instrument acquired spectral and radiometric data on Saturn, the rings, and Titan 
and other satellites. Infrared spectra of Saturn indicate the presence of Hr, CH4, 
NH3, pH3, C2H2, CzH6, and possibly C3H4 and C3H8. A hydrogen mole fraction of 
0.94 is inferred with an uncertainty of a few percent, implying a depletion of helium 
in the atmosphere of Saturn relative to that of Jupiter. The atmospheric thermal 
structure of Saturn shows hemisphere asymmetries that are consistent with a 
response to the seasonally varying insolation. Extensive small-scale latitudinal 
structure is also observed. On Titan, positive ident@cations of infrared spectral 
features are made for CH4, CzH2, C2H4, C2H6, and HCN; tentative ident@cations 
are made for C3H4 and C3H8. The infrared continuum opacity on Titan appears to be 
quite small between 500 and 600 cm-l, implying that the solid surface is a ma- 
jor contributor to the observed emission over this spectral range; between 500 and 
200 cm-I the opacity increases with decreasing wave number, attaining an optical 
thickness in excess of 2 at 200 cm-I. Temperatures near the I-millibar level are 
inde~endent o f  longitude and local time but show a decrease o f  - 20 K between the " - 
equator and north pole, which suggests a seasonally dependent cyclostrophic zonal 
pow in the stratosphere of - 100 meters per second. Measurements of the C ring of 
Saturn yield a temperature of 85 -t I K and an infrared optical depth of 0.09 ? 0.01. 
Radiometer observations of sunlight transmitted through the ring system indicate an 
optical depth of ''.sfor the Cassini division. A phase integral of 1.02 ? 0.06 
is inferred for Rhea, which agrees with values for other icy bodies in the solar 
system. Rhea eclipse observations indicate the presence of surface materials with 
both high and low thermal inertias, the former most likely a blocky component and 
the latter a frost. 
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