ories can only be tested with good data. Beliefs and preconceptions about the way nature should work provide no scientific basis for rejecting predictive empirical models.

> R. J. CORNETT F. H. RIGLER

Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1

References and Notes

- 1. R. J. Cornett and F. H. Rigler, Science 205, 580
- (1979). 2. W. Y. B. Chang and R. A. Moll, *ibid*. **209**, 722 (1980)
- 3. M. Kleiber, The Fire of Life: An Introduction to

Animal Energetics (Wiley, New York, 1961).
B. T. Hargrave, Limnol. Oceanogr. 14, 801 (1969).
W. W. Walker, Water Resour. Res. 15, 1463 (1979); R. J. Cornett and F. H. Rigler, Limnol. Oceanogr. in process.

- Oceanogr., in press. 6. M. N. Charlton, Can. J. Fish. Aquat. Sci. 37, 72
- (1980).7. . C. Chapra and H. F. H. Dobson, Contribu-
- s. c. Chapta and II. I. I. Ecology, mental Re-tion No. 113 (Great Lakes Environmental Re-search Laboratory, University of Michigan, Ann Arbor, 1979) M. Burns, J. Fish. Res. Board Can. 33, 512 8.
- (1976). 9.
- W. J. Snodgrass, thesis, University of North Carolina (1974). 10. Lake Erie temperatures were taken from (8). We assumed a mean temperature of 4°C for Lake Superior, Lake Michigan, and Lake Ontario and, because it is shallower, a temperature of
- 4.5°C for Lake Huron.

11 June 1980

Synergistic Effects in Trace Gas-Aerosol Interactions

Baldwin and Golden (1) recently reported some results of a study of the reaction of various atmospheric gases with both H₂SO₄ and soot surfaces. They reported that SO₂ and NO₂ (as well as several other gases) did not react appreciably with the soot. We have similarly observed no effect when dry SO₂ and NO2 are exposed to carbon surfaces individually, but significant reaction is observed when SO₂ and NO₂ are exposed to such surfaces in combination.

Our experimental procedure (2) consists of a microgravimetric determination of chemisorption with subsequent analysis of the chemisorbed species by various techniques. A substrate sample is placed on the pan of a continuously recording microbalance and is exposed for a given time to a measured flow of carrier gas (dry or humidified) which contains small quantities (10 to 100 parts per million) of one or more test gases. The sample is then exposed to a flow of dry N₂ to desorb any physically adsorbed species. In control measurements, the substrate is exposed to pure carrier gas and the system with an empty pan is exposed to the various gases.

When samples of commercially available carbon black (used as a soot surrogate to maintain uniformity) are exposed to either SO_2 or NO_2 in dry air or N_2 as the carrier gas, no quantitative chemisorption (< 5 μ g on \approx 1 mg of substrate) is observed. However, exposure of the same grade of carbon to a combination of SO₂ and NO₂ in dry air or N₂ results in significant chemisorption (180 to 280 μ g/mg), a major fraction of which is analyzed as sulfate. The NO₂ appears to be an oxidizing agent, since reaction occurs in either N₂ or air. In fact, a slightly higher yield is observed with N₂ than with air; some constituent of air (perhaps NO) may inhibit the reaction somewhat. The reaction is believed to be heterogeneous and to occur on the substrate because no reaction is observed in appropriate control measurements. Humidification of the carrier gas, whether air or N₂, increases both the total chemisorption and the amount of sulfate by about an order of magnitude. These values are measured after desorption of the samples by dry N_2 and therefore do not merely represent adsorbed water.

The effect of humidity in converting

SO₂ on carbon black is so pronounced that some chemisorption and sulfate yield is observed with SO₂ in humid air without the addition of NO₂, but addition of NO2 increases the yield by an order of magnitude or more. Quantitative chemisorption on carbon black has not been observed (i) with SO₂ in dry air, in dry N_2 , or in humidified N_2 in the absence of NO₂ or (ii) with NO₂ in these carriers in the absence of SO_2 .

We have also observed chemisorption and sulfate formation on an Al₂O₃ substrate with $SO_2 + NO_2$ in humidified air, but with lower yields than on carbon black. Barbaray et al. (3) have reported enhancement of the chemisorption and oxidation of SO₂ by NO₂ and H₂O on a V₂O₅ substrate, and Novakov and his coworkers (4) have demonstrated the importance of both gaseous and liquid H₂O on heterogeneous SO₂ oxidation in the presence of carbon surfaces.

We agree with Baldwin and Golden on potential importance of heterothe geneous processes in the atmosphere. We strongly urge, however, that research on such processes should consider synergistic effects among atmospheric trace gases. Baldwin and Golden considered such effects in their studies with the H₂SO₄ surface, with negative results for $O_3 + NO$ and $O_2 + NO$.

> DAVID R. SCHRYER WESLEY R. COFER III **ROBERT S. ROGOWSKI**

NASA Langley Research Center, Hampton, Virginia 23665

References

- A. C. Baldwin and D. M. Golden, *Science* 206, 562 (1979).
 W. R. Cofer III, D. R. Schryer, R. S. Rogowski,
- Atmos. Environ., in press; D. R. Schryer et al., Environ. Sci. Technol. 13, 1419 (1979).
- B. Barbaray, J.-P. Contour, G. Mouvier, Environ. Sci. Technol. 12, 1294 (1978).
 T. Novakov, S. G. Chang, A. B. Harker, Science 186, 259 (1974); S. G. Chang and T. Novakov, in Man's Impact on the Troposphere Lectures in Tencompeting Convirting 1.5. Laterative Sciences 1.5. Laterative Sciences 2. Laterative Sciences 2. Lateratives in Tencompeting Convirting 1.5. Lateratives in Tencompeting Convirting 1.5. Lateratives 2. Lateratives Lectures in Tropospheric Chemistry, J. S. Le-vine and D. R. Schryer, Eds. (Publication TN-1022, National Aeronautics and Space Adminis-tration, Washington, D.C., 1978), pp. 349-369.

20 December 1979