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(X2 = 4.21, 11.2, 4.49, and 17.67, respec- 
tively; P < .05). Median gestation length 
in days (+ range) was 24 + 3, 23 + 2, 
22 ? 0, and 22 + 0, respectively. The 
mean number of offspring per treatment 
(?+ standard error) was 8.2 + 0.8, 
8.0 ? 1.1, 11.7 ? 0.7, and 11.4 ? 0.4, 
respectively. The mean weight per pup 
in grams (? S.E.) was 5.8 ? 0.3, 
5.5 ? 0.6, 7.6 ? 0.3, and 7.8 _ 0.2. The 
latter differences were significant 
(F = 8.83 and 11.40; P < .01), as were 
the following paired treatment means ac- 
cording to the Scheffe test: SS versus 
NS, SS versus NN, SN versus NS, and 
SN versus NN (P < .05). 

Of the total number of litters born (6, 
4, 7, and 14), the number of litters with 
neonatal deaths by day 10 postpartum 
was 4, 3, 0, and 0, respectively; the num- 
ber that survived virtually intact was 1, 
0, 7, and 14, respectively. Overall dif- 
ferences between the number of litters 
with neonatal deaths and the number 
surviving by postpartum day 10 were sig- 
nificant (x2= 19.15 and 26.94, respec- 
tively; P < .001), as were the following 
comparisons: SS versus NS, SS versus 
NN, SN versus NS, and SN versus NN 
(x2= 6.74, 11.67, 7.22, and 12.60, re- 
spectively, and 9.48, 15.56, 11.0, and 
18.0; P < .01). Thus, in the cross-foster- 
ing experiment, the prenatally stressed 
groups differed from the nonstressed 
groups independent of rearing condition. 
Prenatal stress therefore seems to affect 
later reproduction not by disrupting 
postnatal rearing conditions but by alter- 
ing the fetus, possibly by changing the 
hormonal milieu. 

Under severe environmental stress, 
sexual differentiation in some mamma- 
lian species is believed to take place in 
the presence of large amounts of ste- 
roids, some of which are secreted by the 
adrenal glands (7). Disturbances in go- 
nadal and adrenal hormones during peri- 
natal sexual differentiation can disrupt 
reproduction in female offspring by de- 
creasing sexual receptivity or by induc- 
ing gonadotropic or ovarian irregularities 
or by both means (8). Prenatal stress 
therefore may influence the exchange of 
gonadal and adrenal hormones between 
the mother and fetus or the balance of 
these hormones in the fetus alone during 
a critical stage of hypothalamic dif- 
ferentiation, thereby producing repro- 
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Release of Luteinizing Hormone in Male Mice 

During Exposure to Females: Habituation of the Response 

Abstract. Male mice release luteinizing hormone when exposed for a short time to 
a female. In this experiment, multiple blood samples were withdrawn by atrial can- 
nulas from tethered males during either continuous or intermittent exposure to non- 
receptive females. After an immediate, transient release of luteinizing hormone, con- 
tinuous exposure to the same female was accompanied by only random, spontaneous 
elevations in plasma levels of this hormone. Successive presentations of the same 
female at 2-hour intervals elicited gradually diminishing luteinizing hormone re- 
sponses. Exposing such unresponsive males to novel, diestrous females, however, 
dramatically stimulated their release of the hormone. These results demonstrate 
habituation of a socially induced, neuroendocrine response involving reproductive 
hormones. 
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Males of many mammalian species se- 
crete increased amounts of reproductive 
hormones when exposed to females of 
the same species (1, 2). The precise na- 
ture of the relevant cues from the fe- 
males is unknown in most cases, and the 
reproductive function served by the 
males' responses is not understood in 
any. Although short-term exposure of 
male house mice to either females or fe- 
male urinary odor provokes immediate 
release of luteinizing hormone (LH) and 
then secretion of testosterone, male mice 
do not show elevated titers of these hor- 
mones during sustained cohabitation 
with females (3, 4). Thus, this particular 
neuroendocrine response must be sub- 
ject to either sensory adaptation, hy- 
pothalamo-hypophyseal depletion, or 
habituation. By analogy with neuro- 
muscular terminology, habituation is de- 
fined here as the absence of the other 
two phenomena (5). In the experiment 
reported here, we observed that progres- 
sively fewer male mice release LH in re- 
sponse to repeated exposure to the same 
female. The males' LH responses re- 
sumed, however, upon the introduction 
of a novel female. Therefore, our data 
establish that habituation can occur in a 
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socially induced, neuroendocrine re- 
sponse involving reproductive hor- 
mones. 

The design of the study involved se- 
quentially sampling blood from can- 
nulated but freely moving male mice (6) 
during continuous or intermittent expo- 
sure to individual females. In more de- 
tail, 45 cannulated CF-1 males (7) were 
allowed to interact with nonreceptive fe- 
males in the males' home cages; 15 males 
were used for each of three patterns of 
female exposure. During the pattern of 
continuous exposure, a female remained 
with each male throughout the test peri- 
od without being disturbed. During the 
two patterns of repetitive exposure, the 
same female was placed in each male's 
cage three times, and then either that in- 
dividual or an unfamiliar female was pre- 
sented during the fourth sequence. In the 
latter two experimental conditions, fe- 
males were placed in the cages every 2 
hours for 90 minutes and then removed 
for 30 minutes. Five blood samples were 
withdrawn from the males at 5-minute in- 
tervals every 2 hours, always beginning 
before females were placed in the cages. 
The first two samples established the in- 
dividuals' baseline levels of LH and the 
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next three assessed their secretion of LH 
in response to the females (8). Blood 
samples were obtained from males con- 
tinuously exposed to females on the 
same time schedule. Thus, 20 blood sam- 
ples were withdrawn from each male in 
each experimental condition during the 8 
hours of testing. 

All stimulus females used in the exper- 
iment were in diestrus, as verified by 
vaginal smearing. Diestrous females 
were chosen to stimulate the males be- 
cause (i) samples of urine from diestrous, 
proestrous, ovariectomized, or pregnant 
females equally provoke LH release in 
male mice (4); (ii) ejaculation by the 
males was avoided; and (iii) the stimulus 
qualities of the females remained rela- 
tively constant throughout the 8-hour 
test period. 

The data were selected before analysis 
and presentation. Male mice, like males 
of many other mammalian species, expe- 
rience periodic episodes of spontaneous 
release of reproductive hormones (2, 9). 
Plasma levels of LH in mice may rise 
from a few to as many as 400 ng/ml with- 
in 1 or 2 minutes. We observed pre- 
viously that such episodes of LH secre- 
tion are followed by a 20- to 30-minute 

refractory period, during which males do 
not release LH when presented with a fe- 
male (10). Figure 1 shows an example of 
such interference in an animal that was 
not examined during the present experi- 
ment. To avoid interference of this type, 
the entire 20-sample record of a male 
was omitted from the final analysis if that 
male showed a markedly elevated LH ti- 
ter in either of the two blood samples 
preceding female exposure. Of the 45 
males examined, 29 showed an initial re- 
lease of LH in response to the first stimu- 
lus female and no interference thereafter 
due to episodic release of LH; the data 
presented in this report are for these 
29 males. 

As shown in Fig. 2, the patterns of LH 
release varied considerably among the 
males of the three experimental groups 
[P < .05, analysis of variance (11)]. If 
the females were left in the males' cages 
continuously, infrequent and apparently 
random episodes of LH release were ob- 
served; nine such spontaneous pulses 
were observed in six males (the elevated 
mean at 240 minutes in Fig. 2A reflects 
such spontaneous release on the part of 
three males). During successive presen- 
tations of the same female (Fig. 2B), the 
proportion of males responding to the fe- 
males, and hence the mean level of re- 
sponse for the group, decreased marked- 
ly (P < .05, t-test). Indeed, after the 
same female had been presented four 
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Inbreeding and Juvenile Mortality in 

Small Populations of Ungulates 

Abstract. Juvenile mortality of inbred young was higher than that of noninbred 
young in 15 of 16 species of captive ungulates. In 19 of 25 individualfemales, belong- 
ing to ten species, a larger percentage of young died when the female was mated to a 
related male than when she was mated to an unrelated male. 
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An ever increasing number of the 
world's ungulate species exist only in 
relatively small populations in which 
some degree of inbreeding will inevitably 
occur. Extensive studies of laboratory 
and domestic mammals and birds in- 
dicate that inbreeding leads, in the ma- 
jority of cases, to increased mortality in 
young animals and reduced fertility in 
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ural populations suggest that close in- 
breeding has the same deleterious con- 
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*For the sign test, + = juvenile mortality higher in inbred than noninbred young (P = .0003). 
at .05 level; one degree of freedom in all cases; probabilities are rounded to three places. 
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