
they were orientation specific (Fig. 1D). 
Thus, the maximum threshold elevation 
occurred when the test and background 
stimuli were at the same orientation; 
when the test and background gratings 
were 45? apart, no masking was evident. 
Similar interactions occurred when the 
visual display was limited to restricted 
retinal regions, including the suppression 
scotoma. The binocular interactions 
were also contrast specific. In normal 
observers, when the test and background 
were similar in spatial frequency and ori- 
entation, a background contrast below 
threshold lowered the threshold for dis- 
crimination of the test grating. Sub- 
threshold summation for dichoptically 
presented gratings has been described in 
normal observers by Blake and Levinson 
(11). When the contrast of the back- 
ground exceeds threshold, however, it 
acts as a mask, elevating threshold for 
discrimination of the test grating (Fig. 
1E). The increase in threshold has a 
slope of approximately -1 when plotted 
against the background contrast (on log- 
log coordinates). While the masking ef- 
fects of the background above threshold 
were similar for these two observers, the 
observers with abnormal binocular vi- 
sion failed to show subthreshold summa- 
tion. The experiment was repeated for a 
wide range of test and background spa- 
tial frequencies from 0.12 to 8 cycle/deg 
without our finding any evidence for sub- 
threshold summation in the subjects with 
abnormal visual experience. Thus, al- 
though these observers with abnormal 
visual experience showed inhibitory bin- 
ocular interactions similar to those seen 
in normal vision, they failed to show ei- 
ther binocular summation at threshold or 
subthreshold summation. 

The finding of spatially tuned binocu- 
lar interactions in observers with abnor- 
mal binocular vision is surprising even 
though evidence for binocular inter- 
actions in the cortical evoked potentials 
of humans with strabismic amblyopia 
that depend on the spatial frequency and 
contrast of the stimulus has recently 
been reported (12). These findings sug- 
gest that in humans deprived of normal 
visual experience early in life, some bin- 
ocular neurons escape the profound ef- 
fects reported in physiological studies of 
animals reared with induced strabismus, 
anisometropia, or occlusion. In light of 
single-unit studies in animals deprived of 
normal binocular vision, however, the 
robustness and specificity of the binocu- 
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citatory connections which are dis- 
rupted, the suprathreshold masking data 
suggest that the interactions may be in- 
hibitory in nature (interactions not easily 
seen in single unit recordings) or that 
binocular interactions in humans de- 
prived of normal visual experience have 
an elevated threshold and are seen only 
when the stimuli presented to at least 
one eye have sufficient suprathreshold 
contrast (13). 
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Dendritic Growth in the Aged Human Brain and 

Failure of Growth in Senile Dementia 

Abstract. Golgi-stained dendrites of single randomly chosen layer-II pyramidal 
neurons in the human parahippocampal gyrus were quantified with a computer-mi- 
croscope system. In nondemented aged cases (average age, 79.6 years), dendritic 
trees were more extensive than in adult cases (average age, 51.2), with most of the 
difference resulting from increases in the number and average length of terminal 
segments of the dendritic tree. These results provide morphological evidence for 
plasticity in the mature and aged human brain. In senile dementia (average age, 
76.0), dendritic trees were less extensive than in adult brains, largely because their 
terminal segments were fewer and shorter. Cells with shrunken dendritic trees were 
found in all brains. These data suggest a model of aging in the central nervous 
system in which one population of neurons dies and regresses and the other sur- 
vives and grows. The latter appears to be the dominant population in aging without 
dementia. 
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Aging and senile dementia (SD) (1) in 
the central nervous system have been 
characterized as processes of deteriora- 
tion, with both death of neurons in most 
regions (2) and regression of dendrites of 
the cells that have not yet died (3). In ce- 
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rebral cortex of human aged and senile 
dementia patients, this regression report- 
edly progresses in some cells until only 
stubs of dentrites remain (4). We present 
evidence that, although this regression 
of dendrites can be seen in some cells, 
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the dendrites of other cells are grow- 
ing. Growth of dendrites is the domi- 
nant observation in the cell type we 
examined. 

We collected at autopsy samples of 
parahippocampal gyrus from 15 human 
brains. Postmortem time, which ranged 
from 2.25 to 21.50 hours, was not 
significantly related to total dendritic 
length (linear regression analysis, 
P > .30). Cases represented three 
groups (5, 6). Five were neurologically 
normal adults (mean age, 51.2 years; 
range 44 to 55 years), five were normal 
aged adults (mean age, 79.6 years; range 
68 to 92 years), and five were SD cases 
(mean age, 76.0 years; range 70 to 81 
years). Tissue was processed according 
to the Golgi-Cox method of van der Loos 
(7). Sections were cut at 200 /m. Slides 
were coded so that during data gathering 
it was not known which slides came from 
the same block of tissue or which slides 
came from which brain. Dendritic trees 
of single layer-II pyramidal neurons 
were quantified in three dimensions 
through the use of a semiautomatic com- 
puter-microscope dendrite tracking and 
analysis system (8). Apical and basal 
portions of the dendritic plexus were ex- 
amined separately. Cells to be tracked 
were chosen randomly from the popu- 
lation of impregnated neurons whose so- 
mata lay near the center of the thickness 
of the section and whose processes were 
not obscured by other elements in the 
section (9). Fifteen cells were tracked 
from each brain for a total of 225 cells. 
All tracking was done with an oil immer- 
sion lens (x 100) with a long working dis- 
tance. 

Our analysis was a three-dimensional 
analog of Sholl's (10) concentric circles 
analysis. The computer constructed con- 
centric spheres at 10-,Lm intervals cen- 
tered on the cell body. The computer 
then counted dendritic intersections with 
each sphere, which provided a measure 
of dendritic density as a function of dis- 
tance from the cell body. Since the basal 
and apical trees were treated separately, 
the spheres became essentially hemi- 
spheres. Both figures show the data from 
the apical portion of the dendritic plexus. 
Neurons from the aged brain had more 
extensive apical dendritic trees than 
those found in either adult or SD brains. 
The comparisons between pairs of these 
curves were significant according to the 
sign test (aged versus adult and versus 
SD, P < .001; adult versus SD, 
P < .025). The differences in the mid- 
range of distances from the cell body 
ranged as high as 98 percent (aged > 
SD). 

Comparing the three groups on the 
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Fig. 1. (A) Number of dendritic (apical) intersections per cell with concentric spheres center- 
ed around the cell body and spaced 10 /im apart. Points represent averages of the 75 cells in 
each group. (B) Dendritic length per apical tree as a function of centrifugal orders. Points are 
means of 75 cells in each group. 

basis of length of the average dendritic 
segment (total dendritic length divided 
by number of segments) revealed signifi- 
cant differences (Kruskal-Wallis one- 
way analysis of variance, P < .02). The 
aged group had longer dendrites than ei- 
ther the adult or the SD group (Mann- 
Whitney U test, P < .01). The adult and 
SD groups were not significantly dif- 
ferent. 

Figure 1B represents the dendritic 
length for the average cell of each group 
expressed as a function of centrifugal or- 
ders (the first order begins at the cell 
body and branches to give rise to second 
order, which branches to give rise to 
third order, and so forth). The profile for 
the aged group is significantly higher 
than that of the adult and SD groups 
(sign test, P < .03 and P < .01, respec- 
tively) with differences in the fourth 
through seventh orders between 25 per- 
cent (aged-adult fifth order) and 46 per- 
cent (aged-SD sixth order). The curve 
for SD lies somewhat below that of the 
adult (sign test, P < .01). 

In a centripetal ordering the dendritic 
segments that ended without giving rise 
to further segments were classified as 
terminal segments, and those that gave 
rise to these terminal segments were 
classified as next-to-terminal segments. 
All remaining segments were grouped to- 
gether. Figure 2 shows that the increase 
in dendritic length in aged brains and the 
decrease in dendritic length in SD brains 
demonstrated by centrifugal ordering 
(Fig. 1B) are largely attributable to in- 
creases or decreases in the total dendrit- 
ic length of the terminal segments of the 
dendritic trees (11). Next-to-terminal 

segments contributed less to these dif- 
ferences. The remaining segments, 
which constituted a very small propor- 
tion of the dendritic tree, contributed 
still less to the differences among groups 
(Fig. 2). The increases in length of termi- 
nal segments seen in apical dendritic 
trees of aged brains and the decreases 
seen in SD brains seem to be results of 
differences in both the number of den- 
dritic segments and lengths of individual 
segments (Kruskal-Wallis one-way anal- 
ysis of variance, P < .05). In aging, 
therefore, the terminal apical dendrites 
both branch and elongate. This process 
does not appear to take place in SD. 
Both qualitative observation and the 
similarity of patterns of quantitative data 
from all three groups suggest that the 
growing and branching in aged brains 
represent a continuation of normal 
growth rather than an abnormal pattern 
of dendritic growth as reported else- 
where (12). 

Changes in the basilar dendritic trees 
of these same cells were far less pro- 
nounced than those seen in apical trees. 
Differences between groups generally 
failed to reach significance (a = .05). 
This differential between apical and bas- 
al dendritic trees suggests that local fac- 
tors relating to portions of the dendritic 
tree play an important role in dendritic 
responses to aging. 

Linear regression analysis of the data 
from the adult and normal aged brains 
(13) indicates that the net length of indi- 
vidual terminal segments of the average 
apical tree will increase by 0.21 /um per 
year over the span we studied (44 to 92 
years of age) (P < .05). Since there are 
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an average of 9.49 terminal segments per 
cell in the ten cases in these two groups, 
this amounts to a net increase in total 
length of terminal segments of 1.99 gum 
per cell per year (14). Since no directly 
comparable quantitative data exist for 
the net rate of dendritic growth during 
early development, the relationship of 
the net rates of growth in normal aging to 
the rates to be expected during the first 
few years of life (15) is not clear. Qualita- 
tive judgment suggests that dendritic 
growth is more rapid during early than 
during later development. 

These data show that in normal human 
aging, the dendritic tree continues to 
grow. Senile dementia represents an ap- 
parent failure of this growth and perhaps 
even a regression of the dendritic tree. 
This demonstration of continued growth 
of dendrites in normal aged human brain 
is at variance with earlier descriptions (4) 
of regressed dendritic trees. It is consist- 
ent with a small number of quantitative 
reports showing dendritic growth in the 
central nervous system of adult and aged 
rodents (16) and is (to our knowledge) 
the first morphological report of plastic- 
ity in the mature and aged human brain. 
The differences between our results and 
earlier human data are probably a con- 
sequence of differences in technique and 
interpretation of data (17). Although we 
saw the grossly atrophic dendritic trees 
described by Scheibel et al. (4) in all our 
samples (as a rule within a field of cells 
with normal appearance), we were not 
able to distinguish adult, aged, and SD 
cases on this qualitative basis. Even 
though such grossly atrophied cells can 
easily catch an observer's attention and 
undoubtedly represent a real phenome- 
non, they apparently do not adequately 
represent the population of neurons un- 
der consideration. When quantitative 
methods are applied to neurons sampled 
blindly and randomly (18), the con- 
clusion is inescapable that growth of 
dendrites prevails over regressive den- 
dritic changes in at least one region of 
the aging human brain. 

Thus, currently available data suggest 
a model in which there are two popu- 
lations of neurons in normal aging cor- 
tex, one a group of dying neurons with 
shrinking dendritic trees, the other a 
group of surviving neurons with ex- 
panding dendritic trees. In normal aging, 
the latter population prevails. With the 
passage of time there must be a shift of 
individual neurons from the surviving 
population to the dying population. The 
rate at which this shift takes place is 
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Fig. 2. Centripetal ordering. Dendritic length 
at the terminal, next-to-terminal, and remain- 
ing segments. Error bars represent standard 
errors of the means based on five brains in 
each group. 

probably a function of genetic and non- 
genetic or extrinsic (toxicological, be- 
havioral, infectious) factors. We do not 
yet know either the age at which this pro- 
cess starts [if not during early develop- 
ment (19)] or the age at which the surviv- 
ing, growing neurons no longer pre- 
dominate. Nor is it known whether there 
is in normal aging a limit to the potential 
for the growth of healthy neurons. 
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