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Plasma concentrations of triglyceride 
are influenced by a variety of factors, in- 

cluding the amount and composition of 

dietary carbohydrate. Sucrose has re- 

peatedly been reported to result in ele- 
vated concentrations of triglyceride in 
humans and animals (I), an effect usually 
ascribed to the fructose component of 
sucrose. Michaelis and co-workers (2) 
found that lipogenic enzymes in rat liver 
were induced to a greater extent when 
the animals were fed sucrose than when 

they were fed equivalent amounts of glu- 
cose and fructose, the monosaccharide 

components of the disaccharide sucrose. 
This phenomenon has been termed the 
disaccharide effect. The metabolic scope 
of the disaccharide effect has been ex- 

panded to include differences in serum 

triglyceride and free fatty-acid concen- 
trations after fasting (3); differences in 
serum insulin concentrations, food effi- 

ciency, and relative fat pad size (4); and 
differences in hepatic microsomal en- 

zyme activities (5). Documentation of 
the disaccharide effect has heretofore 
been limited to studies with various 
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Fig. 1. Mean diurnal tri- 
glyceride patterns for two 
diets that varied in the form of 
fructose. The disaccharide 
diet (sucrose) and the mono- 
saccharide diet (glucose and 
fructose) each provided 11.3 
percent of total calories as 
fructose. 
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strains of rats (2-5). This report indicates 
that when normal human subjects con- 
sume diets containing sucrose, the mean 
24-hour (or integrated) triglyceride con- 
centrations are significantly higher than 
when the subjects are fed diets that are 
identical except that fructose and glu- 
cose are provided as monosaccharides. 

The design, sample collection, assay 
methods, and statistical evaluation used 
in this study are analogous to those de- 
scribed in detail earlier (6). Significant 
features include the use of a diet se- 

quence that results in all subjects ingest- 
ing both test diets in a balanced cross- 
over design, and continuous collection of 
blood over an entire 24-hour period as a 
series of 48 half-hour integrated collec- 
tions. The withdrawal system allowed 
normal activity and consumption of the 
test diets while the blood samples were 
collected. Eight normal males aged 24 to 
27 were studied on the tenth day of in- 

gestion of the test diets. The study pro- 
tocol was approved by the University 
Committee on Research Involving Hu- 
man Beings. Informed consent was ob- 
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tained from each subject after an ex- 
planation of the purpose, methods, and 
potential benefits and risks of the study. 

Liquid formula diets provided 45 per- 
cent energy from carbohydrate, 40 per- 
cent from fat, 15 percent from protein, 
and 300 mg of cholesterol daily. Casec 
(Mead Johnson Laboratories), a lactose- 
free, defatted casein preparation, sup- 
plied 95 percent of dietary protein; the 
remainder was provided in an egg yolk 
mixture. Dietary fat was provided as a 
mixture of peanut oil, cocoa butter, and 
egg yolk. The proportions of these com- 
ponents were adjusted to maintain a con- 
stant iodine number of 80 to 85 and a 
ratio of polyunsaturated to saturated fat 
of 0.7 for each dietary period. 

Only the carbohydrate composition of 
the diets varied. Both diets provided 50 
percent of the carbohydrate from corn- 
starch. The remaining 50 percent was 
provided as sucrose in one diet and as an 
equimolar mixture of fructose and glu- 
cose in the other. 

The timing of ingestion of the test diet 
and the proportion of calories consumed 
at each meal varied between subjects on 
the basis of personal preferences, but re- 
mained consistent for each subject dur- 
ing all study periods. The mean pattern 
provided 28 percent of calories at 7:30 
a.m., 4 percent at 10:00 a.m., 29 percent 
at noon, 29 percent at 5:00 p.m., and 10 
percent at 9:00 p.m. The evening snack 
varied between subjects more than any 
other meal, providing 0 to 28 percent of 
total calories and being taken between 
8:00 and 10:00 p.m. 

The mean plasma concentrations of 
triglyceride obtained after a 12-hour fast 
were 64 + 9.9 mg/dl (mean + standard 
error) after the sucrose diet and 58 + 9.9 
mg/dl after the ingestion of glucose and 
fructose as monosaccharides; the dif- 
ference is not statistically significant. In 
contrast, the mean 24-hour triglyceride 
concentration of 97 + 13.8 mg/dl during 
ingestion of the sucrose diet was signifi- 
cantly higher (P < .02) than the mean of 
77 + 9.6 mg/dl during ingestion of the 
glucose and fructose diet. 

The integrated concentration repre- 
sents the arithmetic mean of the 48 in- 
dividual integrated samples collected 
over the 24-hour period. The higher 
triglyceride integrated concentration ob- 
served during ingestion of sucrose result- 
ed from a marked difference in tryglyce- 
ride concentration between approxi- 
mately 10:00 a.m. and 5:00 p.m., as 
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seen in Fig. 1. 

These results indicate that the disac- 
charide effect originally described by Mi- 
chaelis and co-workers (2) occurs in hu- 
man subjects. Under the conditions of 
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the study, consumption of a formula diet 
containing sucrose by normal adult 
males results in significantly higher in- 
tegrated concentrations of triglyceride 
than does consumption of equivalent 
amounts of fructose and glucose pro- 
vided as monosaccharides. The mecha- 
nism for the difference in the integrated 
concentration and the diurnal pattern of 
triglyceride remains undefined. The pos- 
sibility that a difference in insulin re- 
sponse to the two diets could explain the 
observed difference in triglyceride con- 
centrations was suggested in earlier ani- 
mal studies (4). However, the mean in- 
sulin concentrations after an overnight 
fast, the mean integrated concentrations 
of insulin, and the diurnal pattern of in- 
sulin concentrations did not vary be- 
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The bacterium that causes Pierce's 
disease (PD) of grape can be transmitted 
to grapevines and other plants by a large 
number of xylem-feeding leafhopper and 
spittlebug species (1, 2). In addition to its 
wide vector range, this as yet unclassi- 
fied bacterium (3) can infect a large di- 
versity of plant species (4) and cause dis- 
ease in almond, alfalfa (3, 5), and per- 
haps citrus (6). Another characteristic 
that distinguishes the transmission of the 
PD bacterium from other leafhopper- 
transmitted prokaryotic plant pathogens 
is that adult leafhoppers can transmit im- 
mediately after acquiring the bacterium 
(7), and that they continue to transmit ef- 
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trations and the triglyceride concentra- 
tions in the fasting state (Fig. 1) suggests 
that future studies of dietary influences 
on triglyceride concentrations should in- 
clude evaluation of the concentrations 
after ingestion of the test diets as well as 
after an overnight fast. 
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ficiently for the remainder of their lives, 
which may be several months (1, 2, 7). 
The finding that infective nymphs do not 
transmit the PD bacterium after molting 
suggested that the PD bacteria attach to 
some portion of the foregut (the foregut 
lining is shed in molting) (8). 

We have identified the location of the 
PD bacterium in the foreguts of infective 
leafhoppers by examining tissues in both 
infective and noninfective blue-green 
sharpshooters [Graphocephala atro- 
punctata (Signoret)] (9) with convention- 
al light microscopy and scanning elec- 
tron microscopy. In addition, we isolat- 
ed the bacterium from aseptically 
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Pierce's Disease Bacterium: 

Mechanism of Transmission by Leafhopper Vectors 

Abstract. The bacterium that causes Pierce's disease of grapevines is isolated 
most consistently from the foregut of its leafhopper vector Graphocephala atropunc- 
tata. As seen in light and scanning electron microscopy of infective leafhoppers, the 
bacteria are attached to the cibarial pump and the lining of the esophagus in the 
foregut where they appear to multiply. These findings suggest that the bacterium is 
transmitted from the foregut by egestion during feeding by infective leafhoppers. 
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