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The visual cortex of the cat receives a 
direct input from the dorsal lateral genic- 
ulate nucleus (LGN) of the thalamus. If 
areas 17, 18, and 19 of the visual cortex 
are removed in the adult cat, neurons in 
the LGN that relay information from the 
retina to the cortex undergo retrograde 
degeneration (1). By contrast, if a similar 
lesion is made in the newborn kitten, 
some of the neurons in the LGN survive 
the operation and do not degenerate (2, 
3). Figure 1A shows a frontal section 
through the LGN of an adult cat in which 
most of areas 17, 18, and 19 of the visual 
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cortex had been removed at birth. Al- 
though almost all of the cells in the nu- 
cleus have degenerated, large surviving 
neurons can be seen. These spared cells 
(Fig. IB) are scattered throughout the 
LGN and are especially prominent ven- 
trally in the vicinity of the C layers (4). 

Since large surviving LGN neurons 
are rarely seen after damage to areas 17, 
18, and 19 in the adult, we wondered if 
their presence in the cat operated on as 
an infant might represent an example of 
neuronal plasticity in which both struc- 
ture and function are spared. We there- 
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Functional Organization of Lateral Geniculate Cells 

Following Removal of Visual Cortex in the Newborn Kitten 

Abstract. When the visual cortex of a newborn kitten is removed, most neurons in 
the dorsal lateral geniculate nucleus degenerate, but a small population of large cells 
is spared. Electrophysiological recording revealed that detailed visual topography in 
the nucleus is abnormal and that single cells have unusually large receptive fields. 
These results suggest that optic axons deprived of their normal synaptic targets rear- 
range their connections to converge on local surviving neurons. 
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fore made large unilateral lesions of the 
visual cortex in five kittens on the day of 
birth (5). The animals were raised to 
adulthood under normal laboratory con- 
ditions and then prepared for extra- 
cellular recording of single LGN neurons 
according to conventional procedures 
(6). 

Control recordings were made from 
the intact LGN of each brain, and we 
sampled a total of 30 single cells from the 
degenerated LGN ipsilateral to the early 
cortical lesion. All units included in this 
sample displayed action potentials typi- 
cal of cell bodies (7), and histological re- 
construction of the brains confirmed that 
each cell ipsilateral to the early lesion 
had been recorded during an electrode 
penetration through a degenerated sec- 
tion of the LGN (8). Given that most of 
the neurons in the degenerated LGN 
were severely shrunken with diameters 
less than 5 /m, it is reasonable to assume 
that most of our recordings were made 
from the large surviving cells, which av- 
erage 30 /tm in diameter. We used a 
small projector to map the receptive field 
of each cell with flashing or moving 
spots, slits, and annuli of various sizes. 
Stimulus intensity was fixed at approxi- 
mately 1.0 log unit above a background 
illumination of 0.5 cd/m2. 

In the LGN of the normal adult cat, 

most cells are driven monocularly and 
have concentric center-surround recep- 
tive fields (9). The diameters of the cen- 
ters of the receptive fields vary with ec- 
centricity in the visual field. They are 
smallest, 0.25? to 1.0?, for cells that rep- 
resent central vision and about double 
that for cells with receptive fields in the 
visual field periphery (10). Aside from a 
small nasotemporal overlap of approxi- 
mately 2?, which results from a bilateral 
projection of the retina along the vertical 
meridian, neurons in the LGN map the 
contralateral visual field in a precise reti- 
notopic fashion (11). 

Two LGN cells ipsilateral to the early 
visual cortex lesion were not responsive 
to stimulation, but the rest were driven 
monocularly (17 by the contralateral eye, 
11 by the ipsilateral eye), and most had a 
center-surround receptive field organiza- 
tion resembling that of normal control 
neurons. We encountered on- and off- 
center cells about equally; of 21 neurons 
tested, 18 had antagonistic surrounds. In 
about half of these cells, responses could 
be elicited when large spots or annuli 
were presented to the surround region 
alone; the remainder had silent sur- 
rounds that suppressed responses to cen- 
ter stimulation. 

Despite the basic integrity of receptive 
field organization, cells in the degener- 
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ated LGN were markedly abnormal with 
regard to receptive field size and topog- 
raphy. Figure 2A shows the sizes of re- 
ceptive field centers and locations in the 
visual field of ten LGN cells recorded 
from one cat. As in the normal cat, the 
smallest receptive field centers tended to 
lie centrally in the visual field and the 
largest peripherally, but the relation of 
the size of the receptive field center to 
eccentricity was not precise, in that 
some cells with receptive fields located 
centrally (for example, unit 13) had 
larger field centers than those at more 
peripheral positions. Regardless of loca- 
tion, however, the centers of receptive 
fields of cells in the degenerated LGN 
were dramatically larger than those in 
normal animals. The smallest receptive 
field center that we mapped was 3? in di- 
ameter, which is about the same size as 
the largest receptive field centers gener- 
ally observed in the normal LGN (10). 
As a group, receptive field centers of 
LGN cells in cats operated on as infants 
had a mean diameter of 7.2? + 0.7? 
(range 3? to 16?). In the normal cat, the 
mean diameter of receptive field centers 
is less than 2? (10). 

These large field sizes suggest that 
single LGN cells receive converging in- 
put from widespread areas of the retina. 
In five neurons, an apparent conver- 
gence of even greater magnitude could 
be demonstrated outside the receptive 
field center. One of these cells, an on- 
center unit with low spontaneous activi- 
ty (Fig. 2B), responded optimally to a 15? 
flashed spot (trace ii); it displayed only 
weak inhibition when the spot size was 
increased to 40?, even though a reliable 
off discharge was evoked from the re- 
ceptive field surround (trace iii). Al- 
though this cell did not respond to 
flashed spots outside of its center-sur- 
round region, it produced vigorous time- 
locked discharges to a 10? moving spot 
anywhere in the contralateral hemifield 
(trace iv). In fact, the cell showed the 
same phasic discharges to a moving spot 
in the ipsilateral hemifield at locations as 
far as 20? from the zero vertical meridi- 
an. 

Of the four remaining cells, one was an 
off-center unit organized similarly to that 
just described, except that it was not 
sensitive to movement in the ipsilateral 
hemifield. The other three cells were not 
excited by wide-field stimulus move- 
ment, but were clearly abnormal because 
they responded to flashed spots over 
much of the visual field. Two of these 
units had concentric center-surround re- 
ceptive fields, one showing strong inhibi- 
tion from a silent surround, the other 
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weak inhibition from a surround with a 
clear off response when stimulated with 
an annulus. Outside of their immediate 
surround regions both cells responded to 
flashed spots throughout the con- 
tralateral hemifield and beyond 20? into 
the ipsilateral hemifield. The third cell 
(on-center) did not have a concentric 
surround but was flanked on one side by 
a region that inhibited response to center 
stimulation and produced an off response 
when stimulated separately. Throughout 
most of the contralateral hemifield and as 
far as 30? ipsilaterally, flashed spots elic- 
ited mixed on-off responses from this cell 
(12, 13). 

Grossly, visual topography in the de- 
generated LGN appeared normal. When 
the microelectrode was moved from me- 
dial to lateral in the nucleus, receptive 
fields shifted from central to peripheral 
in the visual field. Similarly, a change 
from rostral to caudal in the position of 
the electrode was accompanied by 
movement of receptive fields from the in- 
ferior to the superior visual field. In con- 
trast to the normal cat, however, small 
changes in microelectrode position fre- 
quently resulted in large and sometimes 
erratic shifts in receptive field location 
(penetrations III and IV in Fig. 2A). In 
penetration IV, the first cell encounter- 
ed, unit 11, was driven by the con- 
tralateral eye, and its receptive field was 
located in the superior ipsilateral 
hemifield. After advancing the micro- 
electrode only 5 gm, we recorded from 
unit 12, also driven by the contralateral 
eye, with a receptive field at the same ec- 
centricity as unit 11, but 40? lower in the 
visual field. The last cell in the pene- 

tration, unit 13, was 250 gtm from unit 12 
and responded to the ipsilateral eye. Its 
receptive field was in the normal con- 
tralateral hemifield 30? from unit 12. 
Thus, in a short electrode penetration of 
300 gum, we found nearby cells with re- 
ceptive fields that were not only spatially 
distant from each other, but also includ- 
ed locations in both hemifields. In the 
normal LGN, receptive fields of adjacent 
cells tended to be superimposed and to 
remain in register when laminar borders 
were crossed (11). 

Our results demonstrate that man) 
LGN neurons that survive neonatal abla- 
tion of the visual cortex maintain func- 
tional synaptic connections with the reti- 
na. Basic receptive field organization 
and gross visual topography are pre- 
served, but receptive field sizes are un- 
usually large, and fine-grain topography 
is frequently abnormal. During the first 
postnatal month, immature LGN cells 
have large receptive field centers and 
weak surrounds (14). These response 
properties resemble those we have ob- 
served and suggest that early damage to 
the visual cortex may upset the normal 
functional development of LGN cells, 
leaving those which survive in a per- 
manent state of immaturity. This can be 
only a partial explanation of our results, 
however, since visual topography in the 
infant LGN is completely normal, and 
individual cells are not sensitive to wide- 
field stimulation (14). 

In view of the massive retrograde 
degeneration of LGN cells following 
neonatal removal of visual cortex, it is 
reasonable to assume that most post- 
synaptic sites in the LGN normally 

occupied by optic axons are effectively 
removed. As a result, retinal axons de- 
prived of synaptic sites may seek new 
target cells and converge on surviving 
LGN neurons, providing inputs to them 
that originate from a much wider area of 
the retina than is customary (15). In es- 
tablishing new contacts, afferents from 
the retina appear to make certain mis- 
takes and avoid others. Thus, at the level 
of the single cell, visual topography is 
disturbed because adjacent cells some- 
times receive input from disparate parts 
of the retina. By contrast, we never re- 
corded from a binocularly driven LGN 
cell, which indicates that convergence of 
contralateral and ipsilateral afferents is 
avoided. 

A futher consideration is that, after an 
early lesion is made in the visual cortex, 
medium-sized retinal ganglion cells that 
project to the degenerated LGN undergo 
severe retrograde transneuronal degen- 
eration (3). Some geniculate cell abnor- 
malities may thus be due to a reorganiza- 
tion of input from the retina arising from 
the convergence of bipolar and amacrine 
neurons on surviving retinal ganglion 
cells. This reorganization might explain 
the unusual sensitivity of several LGN 
cells to stimulation in the ipsilateral 
hemifield, since a weak influence, pre- 
sumably the result of retinal mecha- 
nisms, has been reported in the normal 
cat (13). 

Previous demonstrations of plasticity 
in the mammalian brain have shown that 
axons may sprout new terminals to in- 
vade deafferented sites or redirect their 
projection to new territories when appro- 
priate target tissues are removed (16). 

Fig. 2. (A) Map of receptive 20 10 O 10 20 30 40 50 60 70 80 
field center sizes and locations _ I i 
of ten cells recorded from the 
degenerated LGN of cat KVC- 
16. The solid lines indicate the 
0? horizontal and vertical merid- 40 
ians. The ipsilateral hemifield is ' i 
to the left of the vertical line, the 30 
contralateral field to the right. 
Penetration and unit numbers are - 20 
indicated by Roman and Arabic I 1 
numerals, respectively. Dashed o. - 10I l ' 

| iii 
lines show cells driven by the ip- (In.2) m,6 
silateral eye; solid lines, cells o ' ' ' ' o 
driven by the contralateral eye. 113 13) ,8 
Receptive field locations of cells 11,4 -Q m,9 -10 'l ' I 
driven by the ipsilateral eye 1111 Pi I iv 
have been transposed to make a - (mt7 - 20 i l -0I I! 
single position of the optic disk 2 

(O.D.) appropriate for both 
eyes. All center diameters are A o B 
abnormally large, and cells re- 
corded in sequence in a given penetration often show widely scattered receptive field locations. (B) Activity of a neuron in the degenerated LGN 
responsive to wide-field stimulus movement. Receptive field center diameter is 15?. Each trace is approximately 4 seconds. Trace i, spontaneous 
activity. Trace ii, on response to a 15? spot flashed for 300 msec in the center of the receptive field. Trace iii, weak inhibition of the on-center 
discharge by a 40? flashed spot covering the receptive field center and surround. Trace iv, discharge coupled to the local back-and-forth move- 
ment (double-headed arrow) of a 10? spot in the periphery of the contralateral hemifield. 
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Our results suggest a new form of plas- 
ticity in that axons deprived of normal 
terminal sites, by the subtotal degenera- 
tion of cells in a target nucleus, shift their 
connections to local surviving neurons. 
Indeed, the hyperinnervation of selected 
neurons may itself play a role in deter- 
mining which cells survive and which 
die. 

E. HAZEL MURPHY 

Department of Anatomy, 
Medical College of Pennsylvania, 
Philadelphia 19129 

RONALD KALIL* 

Department of Anatomy, University of 
Wisconsin, Madison 53706 
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Molecular Microanalysis of Pathological 

Specimens in situ with a Laser-Raman Microprobe 

Abstract. A laser-Raman microprobe has been used to identify microscopic in- 
clusions of silicone polymer in standard paraffin sections of lymph node. This ex- 
ample of organic chemical microanalysis in situ in pathological tissue represents an 
extension of microanalytical capabilities from elemental analysis, performed with 
electron and ion microprobes, to compound-specific molecular microanalysis. 
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We report here the successful appli- 
cation of micro-Raman spectroscopy to 
the detection and identification of com- 
plex silicone polymer fragments in stan- 
dard tissue sections. This technique, de- 
veloped recently in two laboratories (I, 
2), offers exciting new prospects for bio- 
logical studies by providing nondestruc- 
tive compound-specific molecular micro- 
analysis with good spatial resolution and 
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high sensitivity to principal molecular 
components. A major weakness of cur- 
rent techniques [employing electron (3), 
proton (4), and ion (5) beam instruments 
with x-ray or secondary ion analysis] has 
been their general limitation to inorganic 
and elemental rather than organic and 
compound identification. 

The instrument we used, which was 
developed at the National Bureau of 

Fig. 1. Schematic diagram of the laser-Raman 
microprobe developed at the National Bureau 
of Standards. Any one of several laser wave- 
lengths in the visible region of the spectrum is 
used to excite the micro-Raman spectrum. 
Nonlasing plasma lines are removed by use of 
a predispersing prism. The radiation scattered 
by the sample is collected over a large solid 
angle in 180? backscattering geometry. Later- 
al spatial resolution of the probe measurement 
is determined by the spot size of the laser on 
the sample and a spatial filter (exit pinhole, 
not shown) placed in the path of the collected 
scattered light. Depth resolution is several mi- 
crometers (but less than - 12 ,um), depending 
on the optical transparency and surface to- 
pography of the sample. Typical measure- 
ment parameters employed in the micro- 
analysis of thin sections of biological soft tis- 
sue are: laser wavelength, 514.5 nm (green) 
and 647.1 nm (red); laser power, 5 to 60 mW 
(at sample); laser spot diameter, 6 to 20 gtm; 
time constant, 1 to 5 seconds; scan rate, 50 to 
10 cm-, per minute; and spectral slit width, 3 
cm-1. 
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crometers (but less than - 12 ,um), depending 
on the optical transparency and surface to- 
pography of the sample. Typical measure- 
ment parameters employed in the micro- 
analysis of thin sections of biological soft tis- 
sue are: laser wavelength, 514.5 nm (green) 
and 647.1 nm (red); laser power, 5 to 60 mW 
(at sample); laser spot diameter, 6 to 20 gtm; 
time constant, 1 to 5 seconds; scan rate, 50 to 
10 cm-, per minute; and spectral slit width, 3 
cm-1. 
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