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It has been known for some years that 
many binary fluorides are good solid 
electrolytes ("superionic" conductors) 
with ionic conductivities in the solid 
state at high temperatures comparable to 
those of molten salts. The transition 
from the poorly conducting to the solid 
electrolyte state may be abrupt as in YF3 
and LuF3 (1) or continuous as in PbF2 
and other salts with the fluorite (CaF2) 
structure (2) and in salts with the tyso- 
nite (LaF3) structure (3). 

A number of regularities in the transi- 
tion have been noted (4). The more im- 
portant of these for the present dis- 
cussion are as follows. 

1) The occurrence of a solid electro- 
lyte transition of a particular type is 
closely related to crystal structure. With- 
out exception, it has been found that, if a 
material with a given structure type (for 
example, CaF2 or LaF3) undergoes a 
continuous transition, that is, is in class 
III (4), then so do all other crystals with 
the same structure. 

2) The entropy increment associated 
with the transition, whether discontin- 
uous or continuous (5), is comparable to 
the entropy of melting of the salt. This 
finding suggests the concept of "sub- 
lattice melting." 

3) The ionic conductivity of the salt is 
typically 10-1 S m-1 just below the transi- 
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m-1), it is a continuous function of tem- 
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(1030?C). It is clear then that there is a 
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In connection with the above pro- 
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conductivity in that region is ionic rather than electronic. 
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mantle that incorporate extrapolations to 
high temperatures and pressures based 
on the behavior of normal salts may well 
need to be revised. 
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Determinants of Cognitive Performance in Warsaw Determinants of Cognitive Performance in Warsaw 

Firkowska et al. (1) investigated de- 
terminants of cognitive performance in 
Warsaw, where the variance in extrinsic 
determinants (such as the quality of 
schools, health care, and housing) was 

greatly reduced owing to social policy. A 
determinant that does not vary cannot 

explain variability in cognitive perform- 
ance. Thus, Firkowska et al. observed 
stronger correlations between cognitive 
performance and certain intrinsic de- 
terminants (parents' education and occu- 

pation) than between cognitive perform- 
ance and extrinsic determinants. They 
conclude that "an egalitarian social pol- 
icy executed over a generation failed to 
override the association of social and 

family factors with cognitive develop- 
ment that is characteristic of more tradi- 
tional industrial societies" (p 1358). 

It could hardly have been otherwise. 
The egalitarian social policy could have 
eliminated individual differences in per- 
formance only under two unlikely sets of 
circumstances: if intrinsic factors did not 
affect cognitive performance, or if ex- 
trinsic factors were systematically and 

inversely correlated with intrinsic fac- 
tors. Neither of these conditions is met 
in Warsaw nor, probably, in any other 

society. 
Assessed extrinsic factors in the study 

by Firkowska et al. did not vary and 
therefore were not important in explain- 
ing the variability in cognitive perform- 
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in Warsaw nor, probably, in any other 

society. 
Assessed extrinsic factors in the study 

by Firkowska et al. did not vary and 
therefore were not important in explain- 
ing the variability in cognitive perform- 

ance in Warsaw. This does not mean that 
they may not be important in other popu- 
lations where they do vary. Further- 
more, although assessed extrinsic fac- 
tors could not explain variability of cog- 
nitive performance in Warsaw, they may 
have been an important determinant of 
performance. Nutrition cannot explain 
any of the variability in height of a uni- 
formly well-nourished population, but it 
is certainly an important determinant of 
height. The same may be true of extrin- 
sic determinants in Warsaw and else- 
where. 

The study by Firkowska et al. has 

mainly emphasized a statistical fact: re- 
ducing the variability of only one de- 
terminant of a multiply determined capa- 
bility can only reduce the portion of the 
variance which that determinant ex- 
plains. 
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On the specific subject of the ability of 
our study to explain the contribution of 
extrinsic factors to cognitive perform- 
ance, Lasky seems not to be aware that 

he is in agreement with us. We make the 
same point more than once in our paper, 
for instance: 

. . . The range of variation among the extrin- 
sic variables themselves is not great, how- 
ever; such effects as they may have would be 
largely neutralized by their even distribution 
across districts. 

For this reason one cannot say from our 
study that extrinsic factors are not salient in 
mental performance, but only that they are 
not salient under the equalized conditions of 
habitation found in Warsaw. In other words, 
social policy may have removed the effects of 
extrinsic factors from the reach of measure- 
ment ... 

On the general subject of our study of 

cognitive performance in Warsaw, Las- 
ky seems to us to have missed its main 
point. Virtually everywhere (but not in 
Warsaw) "extrinsic" and "intrinsic" fac- 
tors are systematically associated. Statis- 
tical analysis, however sophisticated, of 
their relations with cognitive perform- 
ance is therefore subject to confound- 
ing. For instance, the children of the 
better-off go to "good" schools, the 
children of the poor to "poor" schools, 
and cases that depart from such a distri- 
bution are likely to be too few or too 
deviant to provide adequate statistical 
control. The contribution of our study as 
we see it is that in Warsaw the two sets 
of factors were unconfounded. Since so- 
cial policy had neutralized the effect of 
extrinsic factors, the effects of intrinsic 
factors could be isolated and studied sep- 
arately. We aimed precisely to exploit 
the objective results of a social experi- 
ment rather than a "statistical fact." 

On one particular point Lasky is in er- 
ror. It is not true that "reducing the vari- 
ability of only one determinant of a mul- 
tiply determined capability can only re- 
duce the portion of the variance which 
that determinant explains." Quite apart 
from the untenable assumption of perfect 
knowledge of confounding on which the 
statement rests, Lasky leaves out of ac- 
count the possibility of interaction 
among factors. In the real world, mani- 
festations of interaction are protean, and 
can rarely be safely ignored. 
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