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Ethanol Embryotoxicity: Direct Effects on 

Mammalian Embryos in vitro 

Abstract. Exposure to ethanol retards growth and differentiation in cultured rat 
embryos during organogenesis. The development of untreated embryos is indistin- 
guishable from growth in utero. These data suggest that the hypoplastic features of 
children born to chronically alcoholic mothers are due, at least in part, to a direct 
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Abstract. Exposure to ethanol retards growth and differentiation in cultured rat 
embryos during organogenesis. The development of untreated embryos is indistin- 
guishable from growth in utero. These data suggest that the hypoplastic features of 
children born to chronically alcoholic mothers are due, at least in part, to a direct 
action of ethanol, which causes reduced 
gestation. 

Excessive use of alcoholic beverages 
results in a variety of medical, psycho- 
logical, and sociological disruptions that 
identify alcoholism as one of modern so- 
ciety's major problems. Since a charac- 
teristic pattern of congenital malforma- 
tions associated with the offspring of 
alcoholic mothers was described (1), at- 
tention has been focused on the toxic ef- 
fects of alcohol consumption in preg- 
nancy (2). This fetal alcohol syndrome 
(FAS) has now been observed in more 
than 200 infants, and the relationship to 
chronic alcoholism is well established 
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embryonic cellular proliferation early in 

(3). However, the means by which FAS 
is produced are uncertain at present. It is 
not known if the developmental anoma- 
lies are the result of a direct action of 
ethanol or its metabolites on embryonic 
tissue, or if they are the product of al- 
tered maternal function, or a combina- 
tion of such factors. In addition, it is not 
known if there is a sensitive period of 
gestation during which alcohol may exert 
teratogenic effects or if prolonged heavy 
drinking before pregnancy is a prerequi- 
site for the complete FAS. 

We are currently evaluating the em- 
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bryotoxic potential of environmental 
agents in cultured rat embryos during a 
major portion of the organogenesis peri- 
od. The culture system supports embry- 
onic growth and differentiation indis- 
tinguishable from that in utero. Or- 
ganogenesis is thought to be the interval 
of greatest embryonic sensitivity to envi- 
ronmental factors, and congenital mal- 
formations are most likely to be the re- 
sult of teratogenic insult over this period. 
Our studies have shown that in embryos 
cultured in the presence of ethanol, both 
differentiation and growth were retarded 
as a function of dosage, but no gross al- 
terations in morphogenesis were induced. 
To our knowledge, this is the first un- 
equivocal demonstration of a direct ac- 
tion of ethanol on the developing mam- 
malian embryo, without the confounding 
factors of altered maternal function, 
nutrition, or metabolism. 

Our experiments were designed to in- 
vestigate the development of embryos 
continuously exposed, during organo- 
genesis, to ethanol at concentrations of 
150 or 300 mg of ethanol per 100 ml of 
culture medium (4). Conceptuses were 
explanted from outbred rats (Charles 
River) during the afternoon of the tenth 
day of pregnancy (embryonic age, 9'/2 
days) (5). All operations were carried out 
aseptically, and no antibiotics were used 
throughout the study. Embryos within 
the yolk sac and amnion were dissected 
free of maternal decidua and Reichert's 
membrane, the ectoplacental cone being 
left intact. Two conceptuses were cul- 
tured in 4 ml of medium (6) contained in 
30-ml serum bottles. During culture, bot- 
tles were kept in gentle motion by use of 
a roller apparatus (6), and the temper- 
ature was maintained at 37?C for the 48- 
hour culture period. The oxygen concen- 
tration in the gas phase of the bottles was 
increased from an initial 5 percent 02 to 
20 percent 02 at 17 hours, and 40 percent 
02 at 26 hours (5 percent CO2 at all 
times, the balance N2). At least two con- 
ceptuses from each rat were randomly 
assigned to 300 mg of alcohol per 100 ml, 
150 mg of alcohol per 100 ml, and control 
bottles. Alcohol was added to the medi- 
um at the beginning of the culture from a 
stock solution of ethanol which was at a 
concentration such that the osmolarity of 
the serum (305 mosmole/liter) was main- 
tained (7). Control bottles received the 
same volumes of Hanks basic buffered 
salt solution isosmolar to the serum. 

At the end of the culture, embryos and 
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At the end of the culture, embryos and 
their associated membranes were exam- 
ined, measured, photographed, and fro- 
zen for subsequent biochemical analysis. 
To estimate differentiation and abnormal 
organogenesis, we have devised a com- 
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Table 1. Effect of ethanol on the in vitro growth of 91/2-day rat conceptuses, given as means ? 
standard errors. 

Growth Control Ethanol per 100 ml of culture medium 
after 48 hours culture 3 

of culture (N = 18) 1 1 (N II) (N 13) 

Embryo 
Crown-rump length (mm) 4.54 + 0.08 4.29 + 0.12 3.78 + 0.10*t 
Head length (mm) 2.26 ? 0.04 2.15 + 0.05 1.84 ? 0.07*t 
Number of somites 29.2 ? 0.23 28.6 + 0.37 26.6 ? 0.51*t 
Total DNA (g) 33.4 ? 1.68 31.9 ? 1.81 22.7 + 2.13*t 
Total protein (ug) 333.3 ? 13.5 295.4 + 16.7 223.4 ? 17.1*t 

Yolk sac 
Diameter (mm) 5.07 ? 0.08 5.05 + 0.16 4.75 ? 0.14 
Total DNA(/ g) 8.58 + 0.28 9.04 ? 0.71 8.61 ? 0.55 
Total protein (j/g) 169.8 ? 5.88 166.0 + 14.4 151.2 + 9.37 

Placenta 
Total DNA (Ag) 4.02 ? 0.36 4.68 + 0.76 3.71 ? 0.50 
Total protein (tg) 60.3 + 7.70 96.8 ? 19.2 59.8 + 14.6 

*Significantly different from control values and from 150 mg/100 ml values (pairwise Mann-Whitney U test, 
P < .01). tSignificant dose response (Jonckheere's test, P < .01). 

prehensive morphological scoring sys- 
tem to grade the development of the yolk 
sac, placenta, and embryonic organ pri- 
mordia according to observable morpho- 
logic features (8). This system makes it 
possible to determine embryonic devel- 
opment with an accuracy equivalent to 
- 2 hours of gestation. Total protein and 
DNA contents (9) were measured after 
the tissues were homogenized by sonica- 
tion. 

Over the 48-hour period from embry- 
onic age 91/2 days to 11/2 days, the rat 
embryo develops from the early neurula 
stage with 0 to 3 somites to the tail bud 
stage with 28 to 30 somites (Fig. 1). This 
period is equivalent to approximately 10 
days of human embryonic development, 

from 20 days to 30 days of gestation. Tis- 
sues become extensively segregated into 
the primordia of the neural, sensory, car- 
diac, circulatory, and hepatic organs. 
Within this culture system, the growth of 
embryos in vitro was indistinguishable 
from growth during the equivalent period 
in vivo (10). Growth of the ectoplacental 
cone was severely reduced in vitro; nev- 
ertheless, a vigorous, functional, chorio- 
allantoic placental circulation was estab- 
lished in cultured conceptuses. 

Embryos cultured in the presence of 
ethanol showed a marked reduction in 
growth. The embryonic growth mea- 
sures of length from crown to rump, total 
DNA, and total protein contents were 
significantly reduced in the 300-mg al- 

Fig. 1. Rat embryos at age 91/2 days (A) and after 48 hours of culture (B). (A) and (B) are at the 
same magnification and show the extensive growth over the culture period. (C) A 91/2-day em- 
bryo at x2.5 greater magnification to illustrate the relative lack of differentiated tissue at this 
stage. 
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cohol group, with a significant dose- 
response trend in all cases (Table 1). 
Growth measures for the yolk sac and 
placenta were not affected by the pres- 
ence of alcohol. Not only was embryonic 
growth reduced, but differentiation was 
also retarded as a function of dosage. 
The morphological scores were 41.6 ? 
0.4 for control embryos, 40.7 + 0.3 for 
the 150-mg group, and 38.4 + 0.8 (signif- 
icantly different from control, P < .02) 
for the 300-mg group. Retarded devel- 
opment was also indicated by the dose- 
dependent reduction of the mean number 
of somites developed. Observations de- 
tected microcephalic growth of treated 
embryos, illustrated by reduced head 
lengths (Table 1). No gross structural de- 
fects were observed in either treated or 
control embryos. 

Comparing the growth and develop- 
ment measures of embryos in the 300-mg 
group with equivalent measures for con- 
trol cultures, we estimated that treated 
embryos were retarded by 5 to 7 hours of 
gestation. This value is consistent, 
whether based on morphological, men- 
sural, or biochemical variables. From to- 
tal DNA concentrations, we have calcu- 
lated the cell contents and kinetics of 
cultured embryos (11). Embryos treated 
with 300 mg of alcohol per 100 ml have a 
deficiency of about 8.9 x 105 cells, com- 
pared with control embryos. This result 
is consistent with the calculated 5- to 7- 
hour retardation, which represents ap- 
proximately two-thirds of the cell cycle 
time at this stage of gestation (11). The 
ratios of total DNA to total protein con- 
tents were not significantly affected by 
ethanol treatment, which suggests that 
cell size was not altered. 

Investigations in our laboratories have 
demonstrated that the culture of rat em- 
bryos, according to this method, can be a 
sensitive system to detect developmental 
malformations. For example, dimetha- 
dione, the major metabolite of the anti- 
convulsant trimethadione, a known ro- 
dent and human teratogen (12), induced 
abnormalities of neural tube closure, car- 
diogenesis, mesoderm segmentation, 
cephalocaudal flexion, and brain stem 
development at concentrations of 2.5 to 
10 mM (13). (By comparison, 300 mg of 
ethanol in 100 ml is a 33 mM solution.) In 
contrast, no gross defects were observed 
in embryos cultured in the presence of 
ethanol. However, developmental retar- 
dation during gestation, as seen in this 
study, is consistent with the major mani- 
festations of FAS. The most frequent 
phenotypic features of FAS (prenatal 
and postnatal growth deficiencies, mi- 

crocephaly, short palpebral fissures, 
mandibular and midfacial growth reduc- 
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tions) are hypoplastic (3). Our observa- 
tions suggest that these structural defi- 
ciencies may be the result of reduced cel- 
lular proliferation in the organogenesis 
phase, due to a direct action of ethanol 
(14). Clinical correlation of head size at 
birth with subsequent brain function has 
suggested that microcephaly is strongly 
related to mental retardation (15). Since 
we observed microcephalic growth in 
this study, the mental retardation seen in 
both fully and partially expressed FAS 
(16) may be the result of a direct inhibi- 
tion by ethanol of neural growth early in 
gestation. 

Our demonstration of ethanol-induced 
developmental retardation suggests that 
FAS may not be the result of maternally 
produced metabolites or altered mater- 
nal function. Whether the embryotoxic 
agent is ethanol itself or some other spe- 
cies produced by embryonic metabolism 
of ethanol is not yet clear. Current evi- 
dence, however, shows that embryos at 
this stage of gestation do not possess any 
ethanol-oxidizing or alcohol dehydro- 
genase activities (17). Although our re- 
sults demonstrate that continuous ex- 
posure to high levels of ethanol exerts a 
direct toxic action on the developing em- 
byro, the effects of short-term ethanol 
exposure have yet to be determined. 
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acting groups. The mutual affinities 
therefore reflect in part the ease with 
which they can be removed from solvent 
water, in addition to any specific forces 
of attraction or repulsion that may be 
present. We now report the free-energy 
changes associated with the removal of 
side chains of common amino acids from 
solvent water. These changes resemble 
the relative distributions of the amino 
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acids between the surfaces and the inte- 
riors of native globular proteins, and are 
associated with a sharp bias in the ge- 
netic code. 

The affinity of a compound for watery 
surroundings can be expressed quan- 
titatively in terms of its free energy of 
transfer from the dilute vapor phase, in 
which intermolecular forces are virtually 
absent, to an aqueous solution so dilute 
that solute-solute interactions can be ne- 
glected. Results obtained for many com- 
pounds suggest that this measure of the 
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Fig. 1. (Left) Water-vapor distribution coefficient; (above) 
apparatus for determining the partial pressure of polar sol- 
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Water, Protein Folding, and the Genetic Code 

Abstract. The absolute affinities of amino acid side chains for solvent water closely 
match their relative distributions between the surface and the interior of native pro- 
teins and are associated with a remarkable bias in the genetic code. 
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