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Magnitude of Shear Stress on the San Andreas Fault: 

Implications of a Stress Measurement Profile at Shallow Depth 

Abstract. A profile of measurements of shear stress perpendicular to the San An- 
dreas fault near Palmdale, California, shows a marked increase in stress with dis- 
tance from the fault. The pattern suggests that shear stress on the fault increases 
slowly with depth and reaches a value on the order of the average stress released 
during earthquakes. This result has important implications for both long- and short- 
term prediction of large earthquakes. 

Magnitude of Shear Stress on the San Andreas Fault: 

Implications of a Stress Measurement Profile at Shallow Depth 

Abstract. A profile of measurements of shear stress perpendicular to the San An- 
dreas fault near Palmdale, California, shows a marked increase in stress with dis- 
tance from the fault. The pattern suggests that shear stress on the fault increases 
slowly with depth and reaches a value on the order of the average stress released 
during earthquakes. This result has important implications for both long- and short- 
term prediction of large earthquakes. 

The magnitude of the shear stresses 
acting on the San Andreas fault is a sub- 
ject of considerable controversy. The 
conspicuous absence of a localized heat 
flow anomaly near the fault implies that 
the average shear stress is less than sev- 
eral hundred bars (1, 2). Although this 
is relatively consistent with estimates of 
stress reductions of 1 to 100 bars dur- 
ing earthquakes, laboratory experiments 
with accepted earthquake analogs (such 
as stick-slip frictional sliding) suggest 
that the shear stress level is several kilo- 
bars (3). Resolution of this uncertainty is 
essential for understanding the mechan- 
ics of the fault system and the nature of 
large earthquakes such as the 1857 and 
1906 events. 

Because direct measurement of stress 
at midcrustal depths is not economically 
feasible, we estimated the magnitude of 
shear stress on the fault at those depths 
by measuring the variation of shear 
stress with distance from the fault at 
comparatively shallow depths. In an at- 
tempt to penetrate rocks near the sur- 
face, where joints and weathering may 
have led to stress relief, the stress mea- 
surements were made in wells by using 
the hydraulic fracturing technique (4), in 
which a section of a vertical well is hy- 
draulically isolated and the fluid pressure 
increased until a tensile fracture is pro- 
duced. A vertical fracture should form 
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parallel to the direction of maximum hor- 
izontal compression. The least and great- 
est principal horizontal compressive 
stresses are determined from the manner 
of fracture initiation and extension (5); 

parallel to the direction of maximum hor- 
izontal compression. The least and great- 
est principal horizontal compressive 
stresses are determined from the manner 
of fracture initiation and extension (5); 

the direction of maximum compression 
is determined from the fracture azimuth. 
It is presumed that one of the principal 
stresses is vertical and caused only by 
the weight of overlying material (6). An 
ultrasonic borehole televiewer (7) is used 
to determine fracture azimuth. A tele- 
viewer survey prior to hydraulic fractur- 
ing enables one to determine the distri- 
bution of natural fractures in the well and 
allows selection of initially unfractured 
intervals for the hydraulic fracturing 
tests. 

To make the stress measurements, 
four wells, each about 250 m deep, were 
drilled in the western Mojave Desert 
near Palmdale, California (Fig. 1). Three 
of the wells were north of the San An- 
dreas fault and were drilled into Cre- 
taceous quartz monzonite; the fourth 
was south of the fault and was drilled in- 
to a Tertiary sandstone. 

Numerous fractures and joints were 
encountered in the wells, and stress mea- 
surements could be attempted only at 
about six intervals in each well (a 4-m in- 
terval of unfractured rock is required for 
each measurement). The results of suc- 
cessful measurements are presented in 
Fig. 2. As a measure of the reliability of 
these determinations, note that when 
two measurements are made at similar 
depths, the same results are obtained. 
Also, the magnitude of both horizontal 
compressive stresses exceeds the litho- 
stat (8). 

The manner in which stress varies 
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Fig. 1. Location of the four wells in which the stress measurements were made. 
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Fig. 3. (A) Shear stress (one- 
half the difference in the hori- 
zontal stresses) as a function 
of distance from the San An- 
dreas fault, determined from 
the deepest measurement in 
each well. Curves are based 
on the theoretical model 
shown in (B). (B) Model of 
traction at the fault trace as a 
function of depth. Stress is as- 
sumed to increase with depth; 
the magnitude scale was con- 
trolled by fitting data shown in 
(A). 
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Of particular interest is the basal drag (or 
brittle) thermomechanical model pro- 
posed by Lachenbruch and Sass (2) that 
explains the regional heat flow data. This 
model is similar to that shown in Fig. 3; 
shear stress increases rapidly with dis- 
tance from a weak fault, and a resistive 
shearing traction at the base of the plate 
balances the change in horizontal shear. 
The increase in shear stress with dis- 
tance from the fault is consistent with the 
Lachenbruch and Sass model, too. How- 
ever, prior to rigorous pursuit of any 
model, reliable vertical stress gradients 
should be determined. 

If shear stress on the San Andreas 
fault is limited to about 100 bars, the 
fault is yielding at an extremely low 
stress. Furthermore, nearly total stress 
release occurs during earthquakes. It is 
not clear how this release occurs. The 
applicability of laboratory-derived fric- 
tional coefficients to faulting has been 
demonstrated for induced earthquakes at 
the Rangely oil field in Colorado, active 
normal faults in the Texas coastal area, 
and elsewhere (12). Furthermore, geo- 
detic data appear to verify the basic con- 
cept of elastic strain energy accumula- 
tion and release along the San Andreas 
fault. Thus, sliding experiments do seem 
to be a reasonable analog for earth- 
quakes. However, since the frictional 
coefficients of all common rock types 
and minerals are similar, explanations of 
low fault strength cannot be based on 
fault zone composition (13). One means 
for lowering the strength of a fault is by 
reducing the effective stress normal to 
the fault plane with high (nearly lithostat- 
ic) pore pressure. Although anomalously 
high pore pressure has been proposed to 
exist throughout the region of the San 
Andreas fault (14), the maintenance of 
high pore pressure throughout the active 
history of the fault would require either 
extremely low regional permeability or 
some mechanism for regenerating pore 
pressure within the fault zone itself. 

In terms of earthquake prediction, it is 
clear from these results that if the fault 
zone is anomalously weak and stress is 
almost totally relieved during great 
earthquakes, the accuracy of long-term 
prediction could be greatly enhanced by 
stress measurements in critical areas. 
Furthermore, fault zone monitoring for 
short-term prediction may be quite 
straightforward if generation of pore 
pressure within the fault zone is the 
mechanism responsible for weakening 
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oceans in the past. 

The 180/16O ratio in calcite is depen- 
dent on the temperature and isotopic 
composition of seawater (1). During the 
Pleistocene, changes in global ice vol- 
ume induced characteristic changes in 
the 180 content of the oceans. Thus, the 
oxygen isotopic composition of calcare- 
ous foraminifera in deep-sea sediments 
provides important stratigraphic records 
of temporal changes in both global ice 
volume and ocean water temperatures 
(2). 

To fully utilize the 180 content of 
planktonic foraminifera as a paleoeco- 
logical tool, it is necessary to identify the 
factors that determine the 180/16O ratio 
of different species. In isotopic studies of 
fossil planktonic foraminifera it is gener- 
ally assumed that calcite secretion takes 
place in isotopic equilibrium with am- 
bient seawater, although a few studies of 
living planktonic foraminifera have sug- 
gested the contrary (3, 4). An important 
consideration is that planktonic foram- 
iniferal shells reflect a range of hydro- 
graphic conditions depending on their 
life-spans, depth habitat preferences, 
and vertical migration. In addition, 
planktonic foraminifera exhibit a charac- 
teristic seasonal succession in species 
composition in temperate regions (5), re- 
sulting in a death assemblage in deep-sea 
sediments composed of species that 
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lived in the same region but during dif- 
ferent seasons and therefore under dif- 
ferent hydrographic conditions. 

To investigate some of these variables, 
we determined the oxygen isotopic com- 
position of six species of living plankton- 
ic foraminifera collected in surface 
plankton tows at a station 6 km southeast 
of Bermuda on an approximately bi- 
weekly schedule during an 18-month pe- 
riod (July 1975 to December 1976) (6). 
Hydrographic data were collected bi- 
weekly at station S (32?06'N, 64?39'W) 
about 16 km from our plankton station 
(7). 

Isotopic determinations were made on 
monospecific samples of the following 
species (8): Globigerinoides ruber (pink 
and white varieties separately), Globi- 
gerinoides conglobatus, Globigerinella 
aequilateralis, Globorotalia truncatuli- 
noides, Globorotalia hirsuta, and Pul- 
leniatina obliquiloculata. Globigeri- 
noides ruber had the best sample cov- 
erage because it occurred throughout the 
year in the surface waters off Bermuda. 
The foraminiferal shells were grouped in 
various size classes to determine pos- 
sible isotopic differences due to growth 
rate or ontogenetic stage. No systematic 
differences between different size frac- 
tions of the same species were found (9). 

Our results show that seasonal varia- 
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Seasonal Oxygen Isotopic Variations in Living 
Planktonic Foraminifera off Bermuda 

Abstract. Seasonal variations in the oxygen-18/oxygen-16 ratio of calcite shells of 
living planktonic foraminifera in the Sargasso Sea off Bermuda are a direct function 
of surface water temperature. Seasonal occurrence as well as depth habitat are de- 
termining factors in the oxygen isotopic composition of planktonic foraminifera. 
These relationships may be used to determine the seasonal temperature contrast of 
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