
which indicates that when the target cell 
was killed, the regenerating neuron 
could occasionally make an electrical 
synapse with its distal stump. 

Since, when the target neuron is elimi- 
nated, S-interneurons regenerate to their 
normal region of synapse without mak- 
ing aberrant connections, something oth- 
er than the target cell must be respon- 
sible for guiding the growing neuron and 
triggering it to stop growing. One likely 
candidate is the distal axonal stump, 
which generally survives during the 
month required for axonal regeneration, 
and often much longer. Regenerating 
neurons followed the distal stump appar- 
ently to its end and then stopped grow- 
ing. The regenerating neurons may also 
be responding to other cues in the sur- 
rounding environment, left largely undis- 
turbed by our surgical procedures. For 
example, either the ensheathing glial cell 
or extracellular components in the syn- 
aptic region remaining behind when the 
target S-cell is eliminated could be im- 
portant. In the frog, when the target 
muscle cells are eliminated, end-plate 
specializations of the basal lamina pro- 
vide cues to regenerating motor neurons 
(3), but neurons in the CNS of the leech 
do not have a basal lamina. What acts as 
a signpost to these growing neurons re- 
mains to be determined, but the target S- 
cell is not essential. 
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Ever since the discovery of peptides in 
the brain and pituitary that have opiate- 
like activity [the enkephalins (1) and f3- 
endorphin (2)], attempts have been made 
to determine their physiologic role by 
comparing their pharmacologic effects 
with the effects of opiate drugs, usually 
morphine. Of the native peptides that 
have been isolated, ,3-endorphin appears 
most to resemble morphine with respect 
to its pharmacologic profile. fi-Endorphin 
is active as an analgesic, being 20 to 30 
times more potent than morphine when 
injected into the lateral ventricle and 
three to four times more potent when ad- 
ministered intravenously (3). Further- 
more, sustained infusion of ,3-endorphin 
into the periaqueductal gray region, one 
of the most sensitive sites in the brain to 
opiates, produces opiate-like dependent 
behavior (4), and cross-tolerance be- 
tween 8/-endorphin and morphine has 
been demonstrated (5). 

Perhaps one of the most important ef- 
fects of opiates is their ability to inhibit 
neurotransmitter release; this response 
may be related to changes in calcium ion 
flux. It has been demonstrated, for ex- 
ample, that morphine decreases acetyl- 
choline (6) and norepinephrine release 
(7). Recently, the release-inhibiting ef- 
fect of morphine on acetylcholine has 
been reported to be antagonized by cal- 
cium (8). Calcium also antagonizes the 
analgesic action of morphine and this ef- 
fect can be enhanced by manipulations 
that increase brain membrane permeabil- 
ity to calcium and can be reversed by de- 
creasing calcium availability (9). There is 
now evidence that a single dose of opiate 
effects a decrease in calcium content in 
nerve-ending fractions of brain homoge- 
nates (synaptosomes) (10), and that this 
decrease is dependent in part on reduced 
calcium binding (11) and uptake (12). In 
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contrast, the changes in calcium dis- 
position are reversed after sustained 
morphine administration, and the devel- 
opment of tolerance and physical depen- 
dence, that is, synaptosomal calcium up- 
take and binding, are increased (10-12). 
In view of these considerations, we 
deemed it important to study the effect of 
,8-endorphin on synaptosomal calcium 
uptake. 

Synaptosomes were prepared from ho- 
mogenates of whole brains of male CD1 
mice (21 to 25 g) according to a modified 
method described by Cotman and Mat- 
thews (13). Portions (1 ml) of a synapto- 
somal suspension were used for the de- 
termination of 45Ca2+ uptake in the pres- 
ence and absence of /-endorphin in vitro 
and in vivo. The suspensions were al- 
lowed to stand at 30?C for 2 minutes, 
then we added 1 ml of 45Ca2+ [specific ac- 
tivity 0.05 mCi/mg in a solution contain- 
ing 0.1 mM CaC12 (final concentration)], 
3 mM MgC12, 3 mM adenosine triphos- 
phate (ATP), disodium salt, and 50 mM 
tris buffer, pH 7.5. At fixed intervals 
thereafter (0.5, 1, 2, 4, 6, and 10 minutes), 
the Ca2+ uptake was terminated by sepa- 
ration of the synaptosomes from the in- 
cubation medium by rapid filtration 
through Millipore HAW (0.45 pm pore 
size) and washing three times with cold 
"stopping" solution (100 mM NaCl, 3 
mM MgCl2, 0.1 mM CaCl2, and 50 mM 
tris, pH 7.5). The filters with the sepa- 
rated synaptosomes were transferred to 
glass counting vials containing 10 ml of 
scintillation solution (14), and the 45Ca2+ 
present was determined by liquid scintil- 
lation spectrometry. Other portions of 
the synaptosomal suspension were used 
for the estimation of protein and calcium 
content. The amount of protein from sy- 
naptosomes was determined by the 
method of Lowry et al. (15) with bovine 
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Effect of f8-Endorphin on Calcium Uptake in the Brain 

Abstract. The uptake of 45Ca2+ by nerve-ending fractions from brains of mice was 
inhibited in vitro by 10-9M concentrations of 13-endorphin and in mice injected intra- 
ventricularly with 7 picomoles of /3-endorphin. That the effect was a specific opiate 
agonist response of /3-endorphin was demonstrated by use of the opiate antagonist, 
naloxone, which reversed the action. A role for /3-endorphin in the regulation of 
calcium flux and neurotransmitter release should be considered. 
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serum albumin being used as the stan- 
dard. The results are expressed as micro- 
moles of 45Ca2+ per milligram of protein. 
Synaptosomal Ca2+ content was deter- 
mined directly on diluted samples by 
atomic absorption spectrometry (16). 
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edimented by centrifugation and 10 percent of HCl (weight to volume) and 
ulting pellet was resuspended by assayed for Ca2+. All determinations 
ng with 1.5 ml of deionized dis- were made in duplicate. 
water. Portions (0.5 ml) were f3-Endorphin at a concentration of 
with an equal volume of 2 percent 10-9M reduced significantly the 45 Ca2+ 

i" uptake; this concentration is 100 times 
lower than the concentration of mor- 
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concentrations by about 20 percent (con- 
trol concentrations were 0.023 ,/mole per 
milligram of protein). The magnitude of 
the change observed was compatible with 
the decrease in 45Ca2+ uptake obtained 
in the earlier experiments. 

We then studied the effects of toler- 
ance development on synaptosomal Ca2+ 

uptake. Male Sprague-Dawley rats (150 
to 200 g) were rendered tolerant by the 
repeated intraventricular injection of a 
relatively high dose of 3-endorphin. The 
rats, housed two to a cage, were anesthe- 
tized with ether and a stainless steel can- 
nula was implanted in each in the fourth 
ventricle. Twenty-four hours later they 
were divided into three groups and given 
one of three treatments twice daily for 
three successive days: 5 ml of physiolog- 
ic saline;'9.84 jtg of morphine sulfate in 
0.9 percent saline, or 9.0 ,ug of f/-endor- 
phin in saline. The dose of each opiate 
produced catalepsy that diminished with 
each injection and was absent after the 
sixth and final injection. The animals 
were killed 30 minutes after the last in- 
jection and synaptosomal uptake of 
45Ca2+ was determined. 

The results indicate that the develop- 
ment of tolerance to /3-endorphin is ac- 
companied by enhanced synaptosomal 
45Ca2+ uptake. The mean uptake (+ stan- 
dard error) by the control groups for 10 
minutes was found to be 23.9 ? 0.34 
,tmole per gram of protein, whereas that 
of the /3-endorphin-treated group was 
32.2 ? 0.47 tumole/g. The morphine- 
treated group likewise exhibited in- 
creased 45Ca2+ uptake with a value of 
28.9 ? 0.45 timole per gram of protein 
(P < .01). 

These data are consistent with our pre- 
vious findings that morphine decreases 
the synaptosomal uptake of 45Ca2+ prior 
to the development of tolerance and in- 
creases uptake when tolerance has de- 
veloped (12). These effects are mimicked 
by /3-endorphin and the similarities be- 
tween /3-endorphin and morphine sug- 
gest that /3-endorphin may participate in 
the regulation of calcium flux and neuro- 
transmitter release. Although the rela- 
tive changes effected by /3-endorphin in 
45Ca2+ uptake by the synaptosomes were 
modest, this is not surprising considering 
that the experiments were performed on 
synaptosomes derived from whole-brain 
homogenates. Subcellular studies indi- 
cate that long-term morphine administra- 
tion increases the binding of calcium in 
synaptic vesicles and increases in Mg2+- 
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The results indicate that the develop- 
ment of tolerance to /3-endorphin is ac- 
companied by enhanced synaptosomal 
45Ca2+ uptake. The mean uptake (+ stan- 
dard error) by the control groups for 10 
minutes was found to be 23.9 ? 0.34 
,tmole per gram of protein, whereas that 
of the /3-endorphin-treated group was 
32.2 ? 0.47 tumole/g. The morphine- 
treated group likewise exhibited in- 
creased 45Ca2+ uptake with a value of 
28.9 ? 0.45 timole per gram of protein 
(P < .01). 

These data are consistent with our pre- 
vious findings that morphine decreases 
the synaptosomal uptake of 45Ca2+ prior 
to the development of tolerance and in- 
creases uptake when tolerance has de- 
veloped (12). These effects are mimicked 
by /3-endorphin and the similarities be- 
tween /3-endorphin and morphine sug- 
gest that /3-endorphin may participate in 
the regulation of calcium flux and neuro- 
transmitter release. Although the rela- 
tive changes effected by /3-endorphin in 
45Ca2+ uptake by the synaptosomes were 
modest, this is not surprising considering 
that the experiments were performed on 
synaptosomes derived from whole-brain 
homogenates. Subcellular studies indi- 
cate that long-term morphine administra- 
tion increases the binding of calcium in 
synaptic vesicles and increases in Mg2+- 
dependent adenosine triphosphatase ac- 
tivity in the same organelle (11, 17). Data 
showing that the secretion of neurotrans- 
mitters caused by excitation is coupled 
with entry of Ca2+ (18) and that vesicu- 
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lar Mg2+-dependent adenosine triphos- 
phatase may be involved (19) support the 
concept that /3-endorphin may inhibit the 
release of transmitters by inhibition of 
Ca2+ influx in the manner reported for 
morphine (8). 

Since Ca24+ is necessary for the release 
of the enkephalins (2), it is reasonable to 
suppose that this should also hold true 
for the endorphins. Thus, it appears that 
Ca2+ and brain opiate peptides are inter- 
dependent and may function as part of a 
common system in regulating each other 
and the release of neurotransmitters (or 
neurohormones). 
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various consequences of exposure to un- 
controllable aversive events, the greatest 
empirical and theoretical attention has 
been given to interference with sub- 
sequent escape learning, termed the 
learned helplessness effect (1). The 
mechanism or mechanisms producing it 
are a matter of controversy, however (2), 
Under the learned helplessness hypothe- 
sis (1), an organism exposed to uncon- 
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Long-Term Analgesic Effects of 

Inescapable Shock and Learned Helplessness 

Abstract. Although exposure to inescapable shocks induced analgesia in rats, the 
analgesia was not manifest 24 hours later. A brief reexposure to shock, however, 
restored the analgesia. This reexposure to shock had an analgesic effect only if the 
rats had been shocked 24 hours previously. Further, long-term analgesic effects de- 
pended on the controllability of the original shocks and not on shock exposure per se. 
Implications of these results for learned helplessness and stress-induced analgesia 
are discussed. 
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