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Deciphering the Scattering Code Contained in the 

Resonance Echoes from Fluid-Filled Cavities in Solids 

Abstract. From the echoes of elastic waves incident on inclusions in solids, one 
may extract certain resonance features. These "spectral lines' and their widthsform 
a code identifying the material composition qf the inclusion in a way that resembles 
spectroscopy. This idea finds applications in geophysics, materials science, and any 
field dealing with materials containing inclusions. 
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The amplitudes of backscattered 
waves returned by inclusions in vis- 
coelastic solids, when plotted as a func- 
tion of frequency, exhibit so many rapid 
oscillations and complicated features 
that until very recently it was not pos- 
sible to extract the physical information 
contained in them. The amplitudes of 
these waves can be analyzed in light of 
our new resonance theory of scattering 
from cavities in solids (1, 2) and can be 
used to identify, for a given shape of the 
cavity, the material composition of the 
filler substance. When a (spherical) filler 
is set into oscillation by elastic (say, 
compressional) waves incident upon it, a 
set of modal resonances (fundamental 
and overtones) gets excited in it; these 
resonances characterize the filler as if 
they were its signature. Since incident 
shear waves excite the same resonances 
in the filler, we will limit this analysis to 
incident compressional waves and we 
shall consider fluid fillers only. From the 
usual spectral plots of the backscattered 
wave amplitudes versus nondimensional 
frequency x = k,a, it is possible to obtain 
these resonances, which manifest them- 
selves as narrow lines or wider "spikes" 
(k,l = c)/c,,, where o> is the circular fre- 
quency of the incident wave, c,, is the 
speed of the compressional waves, and a 
is the cavity radius). These plots display 
a quantity which, for simplicity, we will 
call "the echo." The way the resonances 
of an unknown filler are thus being 
used for purposes of material discrimina- 
tion resembles the way chemical ele- 
ments are identified from their optical 
spectra. The resonances obtained from 
the (heretofore physically incomprehen- 

The amplitudes of backscattered 
waves returned by inclusions in vis- 
coelastic solids, when plotted as a func- 
tion of frequency, exhibit so many rapid 
oscillations and complicated features 
that until very recently it was not pos- 
sible to extract the physical information 
contained in them. The amplitudes of 
these waves can be analyzed in light of 
our new resonance theory of scattering 
from cavities in solids (1, 2) and can be 
used to identify, for a given shape of the 
cavity, the material composition of the 
filler substance. When a (spherical) filler 
is set into oscillation by elastic (say, 
compressional) waves incident upon it, a 
set of modal resonances (fundamental 
and overtones) gets excited in it; these 
resonances characterize the filler as if 
they were its signature. Since incident 
shear waves excite the same resonances 
in the filler, we will limit this analysis to 
incident compressional waves and we 
shall consider fluid fillers only. From the 
usual spectral plots of the backscattered 
wave amplitudes versus nondimensional 
frequency x = k,a, it is possible to obtain 
these resonances, which manifest them- 
selves as narrow lines or wider "spikes" 
(k,l = c)/c,,, where o> is the circular fre- 
quency of the incident wave, c,, is the 
speed of the compressional waves, and a 
is the cavity radius). These plots display 
a quantity which, for simplicity, we will 
call "the echo." The way the resonances 
of an unknown filler are thus being 
used for purposes of material discrimina- 
tion resembles the way chemical ele- 
ments are identified from their optical 
spectra. The resonances obtained from 
the (heretofore physically incomprehen- 

sible) echo plot lead directly to a deci- 
phering of the code, indicating the com- 
position of the filler material that is con- 
tained in the echo. 

Plane p (that is, compressional) elastic 
waves incident on fluid-filled spherical 
cavities in solids produce two scattered 
waves, one compressional and the other 
shear (that is, s). The scattering ampli- 
tudes f'r, or f"' of both these scattered 
waves could be analyzed, but, since all 
the main points of this report can be 
shown from either one of these, we 
choose f"'(O). This nonmode-converted, 
normalized amplitude can be shown (1) 
to be 

'f"(O) _ f'"(O) 
a n-_} Cl 
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(2n + 1) 
n = 0 ik,( a A,P,(cos 0) (1) A,P,(cos 0) (1) 

where the coefficients A,, are given by ra- 
tios of two 3 x 3 determinants whose 
elements contain products of the filler- 
to-matrix density ratio (that is, pf/p) with 
various spherical Bessel and Hankel 
functions and their derivatives, of argu- 
ments k,ja and k,a, and of order n. These 
elements are determined from the 
boundary conditions of the problem and 
are given in (1). In the backscattering di- 
rection 0 == T, the Legendre poly- 
nominals are simplified by means of the 
relation P, (cos -) = (-1)". Figure 1 
shows the plot of the modulus of this 
summed backscattered amplitude for a 
cavity filled with ethyl alcohol in an 
aluminum matrix. This is the "echo" 
containing the rapid oscillations and 
complex features mentioned above. 
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Fig. I. Modulus of the summed backscattering amplitude f'Pi/a [denoted MOD(PP)] plotted 
versus kia -= x, for an alcohol-filled spherical cavity in an aluminum matrix. More than 30 echo 
oscillations are identified by means of the resonances isolated in Fig. 2, which are labeled by the 
indices (n, f). 

Adding 15 partial waves (n =-- 0, 1, 
* 14) in the sum of Eq. 1 with 0 = XT 
suffices to produce an accurate graph in 
the range 0 <J x - ka < 10 of Fig. 1. 

Considerable simplification is in- 
troduced by analyzing each individual 
partial-wave contribution rather than the 
summed echo amplitude. The first row of 
Fig. 2 shows the amplitude moduli 
.fi'1l)(rT)/aI of the first two (n = 0, 1) of 

the modes, which were added together to 
obtain the curve in Fig. 1. Each one of 
these modal contributions can be split in- 
to the two portions shown in the second 
and third rows of Fig. 2, also for alcohol 
in aluminum. The second row displays 
the moduli of the smooth "background" 
contributions (analogous to the "poten- 
tial scattering" of quantum theory) of an 
evacuated cavity, which are obtained by 
repeating the preceding calculations set- 
ting pf == 0. The third row gives the mod- 
ulus of the difference of the two afore- 
mentioned complex quantities. For each 
mode n, these resonances are labeled by 
an index t. The spike labeled t = I in 
each mode n is the fundamental, and the 
others (t = 2, 3, ? ? .) are the overtones. 
Each partial-wave plot can be physically 
interpreted as the interference between 
the smooth "potential scattering" back- 
ground of an empty cavity and the reso- 
nances of the filler. There are no approx- 
imations involved in the calculation of 
these figures. 

Overlaying each set ( = 1, 2, * ? ) of 
resonances for each mode (n = 0, 1, 2 

) on top of the summed amplitude of 
Fig. 1 permits us to identify each ex- 
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tremum in that plot, with the sets of 
modal resonances contained in each par- 
tial-wave contribution. The resonances 
responsible for each wiggle of Fig. 1 are 
labeled by indices (n, 4), and over 30 
wiggles are uniquely identified with reso- 
nances in this fashion. Since each sub- 
stance has its own set of identifying reso- 
nances, we could construct a "library of 
signatures" and compare the echo from 
each new, unknown filler to the library 
entries to identify the filler in this fash- 
ion. It is not necessary to do this in de- 
tail, since there are quicker and more di- 
rect methods of identifying the filler from 
the spacing between high-order over- 
tones and their widths. 

In earlier work (1), we displayed plots 
analogous to Fig. 2 but for water (rather 
than alcohol) in the same aluminum ma- 
trix. For the case of water, the set of 
modal resonances is different from that 
in Fig. 2; hence, an immediate dis- 
tinction between the two fillers is quite 
evident. The location of all the reso- 
nance spikes in fact identifies the ratio 
Cf/c,i of the wave speed of the filler to 
that of the matrix. The value of Cf can be 
found from the asymptotic spacing A be- 
tween any two high-order consecutive 
overtones shown in Fig. 2. For spherical 
cavities in solids, we have shown (2) that 
A (to be read from Fig. 2) becomes uni- 
form for [ > I and it is A r(cf/Cd(). For 
alcohol in aluminum, that relation gives 
A = 0.59 (Fig. 2). Thus, knowing cd for 
the matrix and the spacing A between 
consecutive, high-order, modal reso- 
nances determines cf. Conversely, if the 

filler is known, the size of the cavity is 
determined. Incidentally, the same for- 
mula for the asymptotic spacing is also 
found to hold for cylindrical cavities. 

A dependence of the resonance fre- 
quencies on different cavity shapes may 
be critical, but this may be used for ex- 
tracting additional information from the 
echo. The resonance frequencies of a 
fluid enclosed in a prolate spheroidal 
cavity are split into two different sets 
f8le(1) and f,12, corresponding to standing 
waves along a long or a short axis, re- 
spectively. These two sets may be exper- 
imentally separated as follows. If a com- 
pressional wave incident on the cavity 
travels along the long (or short) axis, the 
wave will then excite only the reso- 
nances of type f,,8 ( (f2)). Traveling in 
any other direction, it will excite both 
sets of resonances with weights depend- 
ing on the direction of incidence. (The ef- 
fect of an incident shear wave is just the 
reverse.) This allows a determination of 
the lengths of the two axes and of the 
cavity orientation. 

For a given cavity shape, one may also 
determine pr/p. This is found from the 
resonance widths. 

The expression for the widths found in 
our earlier work [equations 34 and 35 of 
(/)] leads to the relation 

F ( x) = Re z x) - 
\ cf 

Im zj(X) 
rmz() (x - X ) 
Fne/2 

1 **W (2) 

where the functions F,(x) and z1(x) are 
also given in (I) (equations 26 and 27) 
and the resonance frequencies X,,e are the 
roots of the characteristic equation 
Re z1 = F,. Equation 2 can be solved for 
pf/p contained in the expression for F,. 
The result can be evaluated at a point 
one half-width below any resonance 
peak (that is, at x = x.,,e - 1/2 Fi = Xnt) 
and then expanded for x > 1. In this limit 
the density ratio admits considerable 
simplification, and it is eventually found 
that 

Pf ,r - 

1 

+ c_ cot x n 

p 

X C{ C f 2x = X,e 

i (3) 

where the last expression holds for any 
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secutive resonances do not overlap. In 
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Fig. 2. Resonances (third row, labeled by the index e) of the modulus If,;'/al versus x = k(a, for the first two modes (n = 0, 1) of an alcohol-filled 
spherical cavity in aluminum. The resonances are the result of subtracting the smooth "backgrounds" in the second row from the composite 
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