
greater than 250 cm-3 in this area and, 
during two periods, exceeded 1500 cm-3. 
Concentrations similar to those mea- 
sured north of 13?N were found when 
dry air was reentered at 3?N. On 30 Oc- 
tober 1977, flight 50 passed over the 
ITCZ in the troposphere at 178 mbar and 
recorded similar increases in aerosol 
concentration while ozone concentra- 
tions again approached zero. Great fluc- 
tuations in larger (light-scattering) parti- 
cles also occurred in this area. 

Particles large enough to scatter vis- 
ible light were rather uniformly distrib- 
uted (1.0 + 0.5 cm-3) throughout the up- 
per troposphere and lower stratosphere 
at all latitudes. The concentrations mea- 
sured tended to be greater than 1 cm-3 

over the Pacific Ocean and less than 1 
cm-3 over North America, the Arctic ice 
fields, Europe, and Africa. This may be 
evidence that the "ocean hemisphere" 
(particularly the stormy regions at 50? to 
60?S in the Pacific) and the strong con- 
vection along the ITCZ may be major 
sources and transport routes of particles 
to the layers above them near 200 mbar. 

Smaller particles were rather symmet- 
rically distributed around the globe at al- 
titudes between 160 and 250 mbar. A 
maximum occurred over the ITCZ. Con- 
centrations were nearly equal on the 
Greenwich and date-line sides of the 
world. Increased concentrations oc- 
curred over the boundaries between 
tropical and temperate air masses. Com- 
parison of total particle and light-scatter- 
ing particle data at several latitudes rein- 
forces Junge's conclusion (6) that coagu- 
lation exceeds sedimentation as a sink 
mechanism for particles in the higher 
layers. Where fresh injections are rare 
and coagulation times long, as over the 
Arctic and Antarctic, small particles are 
few. 

Generally, aerosol concentrations de- 
crease with increasing latitude, but high- 
er concentrations are sometimes found 
just above strong inversions in the vicin- 
ity of high winds, indicative of a possible 
transport route for particles from tropo- 
sphere to stratosphere. The small inter- 
hemispheric differences in total aerosol 
concentration that do occur may be sea- 
sonal or even due to chance in a single 
observation. 
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Rupture of the San Andreas fault dur- 
ing the main shock of the 8 June 1934 
earthquake near Parkfield, California, 
propagated toward the southeast. The 
main shock occurred at 0447 Greenwich 
mean time (G.M.T.); 17 minutes 25 sec- 
onds earlier, a foreshock of magnitude 
ML 5.1 on the Richter scale occurred 
about 1 km to the northwest of the focus 
of the main shock. Rupture during the 
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foreshock was toward the northwest. A 
nearly identical sequence of events oc- 
curred at Parkfield on 28 June 1966. The 
1934 and 1966 events have been com- 
pared to obtain a basis for anticipating 
the characteristics of future Parkfield 
earthquakes as well as data needed in 
modeling fault dynamics. Finding a 
means for predicting future Parkfield 
earthquakes is especially significant in 
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Fig. 1. Location of the Parkfield epicentral region and trace of the San Andreas fault relative 
to the W-A seismographic stations used (2). In the inset, the epicenter locations (open circles) 
of the 1934 (inferred) and 1966 main shocks and foreshocks together with the direction of 
rupture expansion for each event (heavy arrows) are shown, as is a 5? change in the strike of 
the fault trace (6). The dashed line represents the mapped trace of the fault, the solid line ex- 
tends the trend of the fault from the northwest, and sections of the fault where surface displace- 
ment during the 1966 sequences was observed (11) are indicated by hatching. 
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Earthquakes near Parkfield, California: 

Comparing the 1934 and 1966 Sequences 

Abstract. Moderate-sized earthquakes (Richter magnitude MLS1/2) have occurred 
four times this century (1901, 1922, 1934, and 1966) on the San Andreas fault near 
Parkfield in central California. In many respects the June 1966 sequence was a re- 
markably detailed repetition of the June 1934 sequence, suggesting a recurring rec- 
ognizable pattern of stress and fault zone behavior. 
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side to the fault to the northeast, an azi- 
muth not sensitive to differences in di- 
rectivity along the fault trace. However, 
the high-frequency portions of the 
spectra are dominant in opposite direc- 
tions along the fault for the two events, 
indicating that the 5 June foreshock rup- 
tured to the southeast while the later 
foreshock ruptured northwestward. The 
spectral differences illustrated in Fig. 2D 
are typical of the subtle but clear seis- 
mological evidence for differences in di- 
rectivity of Parkfield-earthquakes. 

The similarities in fault behavior in the 
1934 and 1966 sequences suggest a sce- 
nario for Parkfield earthquakes. An ML 
5.0 earthquake (the foreshock) occurs 
immediately northwest of the bend in the 
fault (the 5? change in the strike of the 
fault trace), which acts as a barrier to 
slip. The fault zone near the hypocenter 
of the main shock, southeast of the bend, 
is loaded by slip associated with the fore- 
shock, even though that slip need not ex- 
tend through the bend to the vicinity of 
the main shock hypocenter. The main 
shock does not occur immediately, but 
the loading is sufficient to initiate the in- 
evitable failure of the fault zone south- 
east of the bend. The main shock occurs 
about 17 minutes later immediately 
southeast of the bend, which again acts 
as a barrier to slip, directing rupture 
growth toward the southeast. Note that 
breaking of the bend itself during the se- 
quence is not necessary even though the 
loading stress is transmitted across it. 
The extent of rupture during the main 
shock may be controlled by physical dis- 
continuities on the fault surface (6, 15). 
Great earthquakes on the San Andreas 
fault, such as that in 1857, would thus 
initially resemble moderate-sized events 
and grow to full extent by breaking the 
barriers that arrest slip in the ML 5'/2 
shocks. It may well be, then, that suc- 
cessful prediction of major earthquakes 
(that is, smaller ruptures that have "got- 
ten away") will involve an assessment of 
the potential for rupture growth across 
barriers. 

Although the initial stages of the 1934 
and 1966 Parkfield sequences were simi- 
lar, the 1934 sequence included an early 
ML 5.0 foreshock (the reference event in 
Fig. 2D), whereas the 1966 sequence did 
not (4, 9). Improved instrumental cov- 
erage in 1966 revealed southeastward 
migration of small earthquakes in the 
months preceding the main shock toward 
its epicenter (9), while fresh cracks on 
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before the 1966 main shock (16) are con- 
sistent with substantial precursory aseis- 
mic slip on the fault. The migration of 
small shocks or precursory aseismic slip, 
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or both, could serve as the 1966 loading 
counterpart to the early 1934 foreshock. 
The sparse instrumental data available 
for the 1922 Parkfield earthquake and the 
similar descriptions for the 1901 Park- 
field shock strongly suggest that they oc- 
curred near and were comparable in size 
to the 1934 and 1966 main shocks; nei- 
ther was preceded by felt foreshocks 
(17), so that the 1901 and 1922 Park- 
field shocks do not conform precisely to 
the proposed scenario. However, the 
failure patterns in 1934 and 1966 suggest 
that future ML 51/2 earthquakes at Park- 
field will follow episodes of stress con- 
centration at the bend in the fault trace. 
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sauria. The age of the fossiliferous beds 
is Callovian-Oxfordian (1), some 15 mil- 
lion years older than the well-known di- 
nosaur faunas from the Morrison forma- 
tion and the Tendaguru beds, both as- 
signed to or considered the top of the 
Jurassic. 

As would be expected, the anatomical 
characteristics of the species recently 
discovered in Patagonia are more primi- 
tive than those of comparable species of 
the cited dinosaur faunas. Knowledge of 
the Jurassic assemblages of dinosaurs is 
largely based on the rich information 
from the end of that period (Morrison 
and Tendaguru); only relatively poor in- 
formation is available for the rest of the 

Fig. 1. Lateral view of the pelvis of Piat- 
nitzkysaurus floresi n.g.n.sp. (new genus, new 
species), a megalosaurid carnosaur from the 
Jurassic of Patagonia (specimen PVL. 4073). 
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