
sual language tasks at the occipital leads. 
The repeated failure to find a difference 
between the IHP and NHP groups with 
dichotic listening tests would also be ex- 
plained if hand posture is related to visu- 
al processing. Levy's successful method 
is visual. 

In conclusion, we find modest support 
for the inferences of Levy and Reid (6) 
and Moscovitch and Smith (8) that the 
two hand postures might indicate dif- 
ferent patterns of brain organization 
among left-handers. However, it does 
not appear the hand posture can be used 
to indicate the "language hemisphere." 
Indeed, the assumption that language is 
unitary may underlie much of the con- 
flict in the literature on lateralization. 
The left-handed population is often de- 
scribed as including individuals in whom 
"language" is represented in the left 
hemisphere, or the right, or bilaterally. 
Evidence for this conclusion has come 
primarily from clinical studies of patients 
with lesions or patients who have under- 
gone presurgical anesthetization of one 
hemisphere by sodium amytal (1) and 
from studies of normal subjects using vi- 
sual hemifield stimulation (2), dichotic 
tasks (3), or EEG measures of task-de- 
pendent asymmetry (4, 5). 

The correlations between results ob- 
tained with these various methods are 
low (23), perhaps because they are not 
studying the same language behaviors. 
For example, clinical studies frequently 
include receptive or expressive language 
dysfunctions, or both, under the general 
heading of aphasia. The sodium amytal 
procedure tests only speech; the tachis- 
toscopic paradigm, only reading; and the 
dichotic measure, only listening. Few 
EEG studies have explicitly examined 
asymmetry differences among several 
language tasks. With all of these meth- 
ods, although specific language behav- 
iors are tested, the results are usually 
generalized to indicate "the language 
hemisphere" as if any language task 
were representative of them all. 

Language is not a unitary function. In 
left-handers, or groups such as learning- 
disabled and stutterers whose cerebral 
organization is alleged to be less lateral- 
ized than typical right-handers, it may be 
only particular components of language 
that are lateralized differently. The con- 
cept of a language hemisphere may be 
most useful when describing typical 
right-handers in whom all these behav- 
iors are lateralized fairly consistently to 
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tasks depend on communication be- 
tween specific organized regions in the 
cortex. Therefore, attempts to show dif- 
ferences in language lateralization be- 
tween subjects should also analyze task 
and regional specificity. 

JEANNINE HERRON 
DAVID GALIN 

JACK JOHNSTONE 

ROBERT E. ORNSTEIN 
Langley Porter Institute, University of 
California, San Francisco 94143 
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Pupillary Responses During Information Processing 

Vary with Scholastic Aptitude Test Scores 

Abstract. The magnitude of task-evoked pupillary dilations during mental activity 
has previously been shown to index the cognitive capacity utilized in the performance 
of the mental task. To determine the relation between "intelligence" and capacity 
demands during mental activity, task-evoked pupillary dilations were measured 
while two groups of university students differing in their scores on the Scholastic 
Aptitude Test solved mental arithmetic problems. Over three levels of problem diffi- 
culty, more intelligent subjects showed smaller task-evoked pupillary dilations than 
did their less intelligent counterparts. Thus, the more intelligent appear to possess 
more efficient cognitive structures of information processing. These data provide 
evidence that physiological differences between individuals of differing psychometric 
intelligence emerge during mental activity. 
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"mental engines" that draw upon this 
power reservoir. This forthright view of 
the biological nature of intelligence has 
since remained largely untested. 

Spearman's concept of G as general 
mental energy has much in common with 
the concept of "processing resources" 
now prevalent in contemporary cogni- 
tive psychology (2). In this view, cogni- 
tive processing places demands on a lim- 
ited supply of resources or capacity. 
Mental performance becomes resource- 
limited when the total demand for re- 
sources exceeds the available supply (3). 
The theoretical concept of momentary 
processing load seems to be reflected ac- 
curately in autonomic signs of central ac- 
tivation (4). Specifically, small task- 
evoked changes in the size of the pupil of 
the eye provide a sensitive autonomic in- 
dex of the shifting demands of cognitive 
processing (5). This chain of reasoning 
suggests that the amount of "general 
mental energy" that is demanded in 
thinking can be measured with recently 
devised pupillometric methods. Thus, 
the dynamics of cognitive processing 
may now be compared among individ- 
uals who differ in psychometrically mea- 
sured intelligence. 

The hypothesis that task-evoked acti- 
vation might be associated with general 
intelligence allows for three possible pat- 
terns of difference. An attentional or mo- 
tivational view of intelligence would sug- 
gest that people who score high on in- 
telligence tests apply themselves with 
more vigor to the task at hand. If that is 
true, larger pupillary responses should 
be observed for all types of problems in 
more intelligent individuals. A second 
possibility is that people differ in the effi- 
ciency with which they use their avail- 
able capacity. This view is consistent 
with the notion that the component pro- 
cesses of any task might individually re- 
quire less capacity if they are better 
learned or more automatic. Overlearned 
tasks elicit less autonomic activation re- 
sponses in their execution (6). A third 
possibility is that more intelligent indi- 
viduals have more capacity available and 
therefore can solve more demanding 
problems. This possibility is independent 
of the first two hypotheses, and was not 
tested by the experiment reported here. 

To choose between the first two hy- 
potheses, task-evoked pupillary dilations 
were measured in two groups of subjects 
of different psychometrically measured 
intelligence [defined for the purposes of 
this experiment by scores on the Scho- 
lastic Aptitude Test (SAT)] as they 
solved mental multiplication problems of 
varying difficulty (7). Thirty-nine male 
and female Caucasian undergraduate 
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ents served as subjects. The 22 sub- the horizontal plane of the subject's left 
in the high group had combined eye, and displaced 45? from the line of 

)al plus quantitative) SAT scores of gaze. Momentary pupil diameter was 
or more (mean 1407). The 17 sub- available as analog output of the pupil- 
in the low group had combined lometer. This output was sampled and 

's of 950 or less (mean 877). digitized at 50-msec intervals during 
ie two groups were also widely sepa- experimental trials. 
I on an independent short written The subject sat at a microswitch input 
of mental ability, the Wesman Per- keyboard, with his head positioned in the 
tel Classification Test, which was ad- pupillometer. Illumination in the 6- by 
stered after the experimental task 9-foot room was constant at approxi- 
) = 12.2, P < .001]. On that test, no mately 37 foot-lamberts (1 foot-lam- 
-ct in the low group scored as high bert = 3.4263 cd/m2). The subject viewed 
e lowest-scoring subject in the high a closed-circuit video monitor of his own 
p. There was, however, no signifi- pupil, set at very low contrast, so that he 
difference between the two groups could assist in keeping his pupil centered 
iniversity_ grade point averages and focused. This screen was 2 m from 
h= 3.18; X1ow = 3.03; t(38) < 1]. the pupillometer headrest. To obtain a 
I phases of experimentation-from measure of noncognitive pupillary re- 
control and pupillometric data ac- sponsivity, the subjects' pupillary light 
tion to data verification, reduction, and dark reflexes were measured to 
display-were performed automati- shifts of room illumination between 17 

under the control of a general- and 27 foot-lamberts. 
ose digital computer and laboratory During the multiplication task, audi- 
face system. Vertical pupillary di- tory stimuli were generated from pre- 
er was measured by a television viously stored files of digitized natural 
lometer (Whittaker 1050S), which speech and presented under computer 
ains a headrest and an infrared eye control. The stimulus-word files, digi- 
inator. The camera was aligned on tized at a rate of 10 kHz, were scaled 

to equalize root-mean-square voltage 
among words, producing relatively uni- 
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Low group of problems for which the multiplicand 
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of difficulty for subjects in the high and through 19 
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-nce. At all difficulty levels, larger pupil- After each experimental session, the 
esponses are observed for subjects in the pupillary records for individual trials 
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artifacts. Trials with small artifacts oc- 
curring in noncritical periods were cor- 
rected according to a linear interpolation 
procedure. Trials with major artifacts 
were discarded. From these records, av- 
eraged task-evoked pupillary responses 
were computed separately for each sub- 
ject and for each level of problem diffi- 
culty for all trials in which the subject 
had correctly solved the problem. 

Subject performance on the mental 
arithmetic task differed between groups, 
as expected. Individuals in the high-abili- 
ty group were more accurate at every 
level of difficulty (Table 1). The median 
total score for the high group was 31 (out 
of 32) problems correctly solved; the low 
group median was 26 (Mann-Whitney 
U = 58, P < .001). 

Figure 1 presents the averaged evoked 
pupillary responses for correct, artifact- 
free trials as a function of group and 
problem difficulty. All responses show a 
common pattern of dilation followed by a 
slight constriction after the multiplicand 
was presented. A larger dilation was 
evoked by the multiplier; this increase in 
pupillary dilation was maintained during 
the problem-solving period. For the 
easiest problems, there was a return to 
baseline during the period between mul- 
tiplier and the answer cue. 

Statistical analyses of these data con- 
firm that both problem difficulty and abil- 
ity level affect the size and form of the 
pupillary response in the mental arith- 
metic task. The extent of task-evoked 
activation during the period of problem 
solution was estimated by the mean pu- 
pillary dilation during the 4 seconds pre- 
ceding onset of the answer cue (mean 
pupillary diameter for seconds 4.5 to 
8.5 minus pupillary diameter at second 
2.0). This measure provides a stable es- 
timate of task-induced change that is 
independent of baseline pupillary diam- 
eter (8). An analysis of variance con- 
firmed the effects that are apparent in 
Fig. 1. More difficult problems evoked 
larger pupillary dilations [F(2, 74) = 49.75, 
P < .001], thus reconfirming the pre- 
viously demonstrated relationship be- 
tween problem difficulty and the task- 
evoked activation (5). What is new in 
these data is that subjects of greater psy- 
chometrically defined intelligence show 
less task-induced activity in the perform- 
ance of the mental multiplication task 
than do subjects of lesser intelligence 
[F(l, 37) = 5.59, P = .03]. Equivalent 
tasks appear to impose a smaller pro- 
cessing load in more intelligent individ- 
uals. 

To test the possibility that the dif- 
ference between groups in average pupil- 
lary response amplitude is wholly attrib- 
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iance within groups. We therefore see 
little possibility that pupillary response is 
appropriate for use as a physiological 
measure of intelligence. 

Task-evoked pupillary responses thus 
appear to index the processing load im- 
posed on the nervous system in the per- 
formance of mental activities (4). The 
magnitude of the physiological response 
systematically increased with task com- 
plexity or difficulty. Over all levels of 
problem difficulty for which correct per- 
formance was possible, more intelligent 
individuals showed smaller pupillary di- 
lations than did their less intelligent 
counterparts. This result argues for more 
efficient and automatic information pro- 
cessing in individuals of higher psycho- 
metrically defined intelligence. These re- 
sults provide evidence that physiological 
differences between individuals of dif- 
fering psychometric intelligence emerge 
during mental activity (9). 
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Striated skeletal muscle is capable of 
rapid and widespread regeneration (1). 
In view of the established postmitotic na- 
ture of the nuclei in syncytial myofibers, 
the source of the regenerating cells in 
adult muscle has been considered to be 
the mononucleated satellite cells (1, 2, 
2a) that lie beneath the external (basal) 
lamina of myofibers (2a, 3). Investiga- 
tions in vitro have demonstrated that sat- 
ellite cells recapitulate the normal em- 
bryonic development of skeletal muscle 
through proliferation and fusion to give 
rise to cross-striated, contractile myo- 
fibers (4). Therefore, on a functional 
basis, satellite cells are developmentally 
indistinguishable from embryonic myo- 
blasts in that both serve as myogenic 
precursors. 

When grown under established culture 
conditions (5), satellite cells become 
myoblasts by faithfully repeating the se- 
quence of muscle cytodifferentiation as it 
is observed in vivo. However, if grown 
in less than optimal conditions, or in an 
environment simulating that of diseased 
muscle, the developmental expression of 

Fig. 1. Adjacent thick and j 
thin sections of rat tibialis 
anterior muscle showing the ;V, 
same cultured myogenic cell 
48 hours after implantation. ?<:s 
The thick-section radio- 
autograph (inset) shows sil- 
ver grains over implanted 
cell (x 1300). Electron mi- 
crograph (below inset) of the 
same cell illustrates typical 
cytology of a rat myoblast 
(x7400). 
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low-intelligence than the high-intelligence 
group, the pattern of results reported here, and 
contradictory to Kuk and Janisse's conclusions 
(figure 6-1 in Janisse). 
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these muscle precursors is reversibly al- 
tered (6). As a result of this modulation, 
the myogenic cells assume fibroblast or 
adipocyte morphology and behavior as 
long as they are grown in the altered en- 
vironment. 

Do satellite cell-derived myoblasts 
grown in vitro under optimal or less than 
optimal culture conditions truly reflect 
the developmental behavior of satellite 
cells in intact tissue, or are the cultured 
cells merely responding to an artificial 
growth environment? As a first step to- 
ward answering this question, the fate of 
satellite cells must be studied in vivo. To 
identify the developmental potential of 
satellite cells, experiments have been 
carried out by others (2a, 7) to label in- 
tact muscle tissue with [3Hjthymidine 
and injure the labeled muscle in situ or 
transplant it into different hosts. Al- 
though these studies suggest that satel- 
lite cells participate in the normal regen- 
erative response, the muscle used in 
these investigations is composed of a 
heterogeneous population of labeled 
cells that include satellite cells, fibro- 
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Developmental Fate of Skeletal Muscle Satellite Cells 

Abstract. Radioisotopically labeled satellite cells from clonal cultures were im- 
planted into normal muscle of the original donor. Implanted cells invariably retained 
their myogenic potential by participating in the regeneration of damaged myofibers 
or in the development of existing fibers. 
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