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Nitrous Oxide Emissions from an Irrigated Cornfield 

Abstract. During the 1978 growing season, nitrous oxide (N20) emissions from a 
typical well-managed northern Colorado field of corn (Zea mays L.) totaled approxi- 
mately 2.6 kilograms of nitrogen per hectare, or about 1.3 percent of the applied 
fertilizer nitrogen. Thirty percent of the loss occurred during the 3 weeks following 
fertilization while ammonia was being rapidly nitrified, and 59 percent was emitted 
during the week after the field's first irrigation, when restricted oxygen diffusion fa- 
vored denitrification. Considering the large spatial and temporal variability of N20 
emissions from soil, micrometeorological estimates of vertical N20 flux density com- 
pared favorably with estimates based on a simple soil cover method. 

During the last decade, public anxiety 
regarding air pollution has expanded 
from concern about obvious effects at 
ground level to consideration of effects 
on the upper atmosphere, and particular- 
ly to possible depletion of the strato- 
spheric ozone that controls the intensity 
of ultraviolet radiation reaching the 
earth's surface. According to Thrush (1), 
ozone concentration in the atmosphere is 
determined by the relative rates of its net 
photochemical formation from molecular 
oxygen and its catalytic destruction by 
other species, principally nitric oxide 
formed in the stratosphere from nitrous 
oxide (N20O) transported upward from 
the surface. Recognizing that biological 
denitrification (2) is the largest known 
source of N20O in our environment, sev- 
eral authors have recently attempted to 
estimate the effect that agriculture's in- 
creasing use of industrially fixed nitrogen 
(N) fertilizers might have on increasing 
atmospheric N20 concentration and, 
therefore, ozone destruction (3-5). Such 
an estimate requires knowledge of the 
fraction of fertilizer N returned to the at- 
mosphere as N20. Unfortunately, very 
little information concerning N20 evolu- 
tion from agricultural soils under field 
conditions is available for use in assess- 
ing the probable value of that fraction 
(6). We report here field measurements 
of N20 emissions from an irrigated agri- 
cultural area of northern Colorado 
throughout the 1978 growing season, and 
we compare two methods of making 
these measurements. 

Vertical N20 flux density measured 
above a 120-ha field of corn (Zea mays 
L.) about 4 km northeast of Berthoud, 
Colorado (7), is plotted as a function of 
time in Fig. 1. Temporal variability was 
extremely high, with emissions ranging 
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from a low of 0.08 kg of N per hectare 
per year on 28 August to a high of 150 kg 
per hectare per year on 22 July. Such 
high variability emphasizes the uncer- 
tainty in predicting stratospheric ozone 
concentration changes from limited sur- 
face N20 flux data. During the period 
from corn seedling emergence (17 May) 
until crop maturation (18 September), 
N2O emissions totaled approximately 2.6 
kg of N per hectare or about 1.3 percent 
of the 200 kg of N per hectare applied as 
ammonia on 23 June. The field under 
study was more heavily fertilized and 
watered than most of the world's crop- 
land. Thus our data are not much dif- 
ferent from those of the Council for Agri- 
cultural Science and Technology (5), 
which estimated that an average of 1 kg 
of N as N20 is liberated annually per 
hectare of harvested cropland on earth 
(5). However, the data appear inconsist- 
ent with the large N20 fluxes computed 
by others from the estimated normal at- 
mospheric lifetime and abundance of the 
gas (3, 4). 

Figure 1 contains data points acquired 
by two independent methods. The data 
points shown as closed circles joined by 
straight lines were obtained by mon- 
itoring the accumulation of N20 beneath 
thermally insulated, radiation-shielded 
glass bell jars placed over the soil for a 1- 
hour period. Air samples (30 ml) taken 
by syringe from the bell jars at 15-minute 
intervals were analyzed by a gas chro- 
matograph with an electron capture de- 
tector (GC-EC) (8). Nitrous oxide flux 
was computed by multiplying the con- 
centration increase per unit time by the 
average height of the soil cover, assum- 
ing that the buildup of N20 beneath the 
cover had negligible effect on the con- 
centration gradient in underlying soil (9). 

Large spatial variability in the data was 
apparently real and does not reflect nega- 
tively upon the method. Biggar's dis- 
cussion of the spatial variability of N 
in soils (10) indicates that high varia- 
bility should not be unexpected. 

Data obtained by the soil cover meth- 
od were compared periodically with ver- 
tical N20 flux densities measured by the 
aerodynamic profile method described in 
detail by Thom (11). Data from the latter 
method, shown as triangular points in 
Fig. 1, were computed as the product of 
an eddy diffusivity and the vertical con- 
centration gradient of N20 in the lower 
atmospheric boundary layer. Standard 
micrometeorological sensors were used 
to measure the wind speed and temper- 
ature profiles from which eddy dif- 
fusivity was estimated. Nitrous oxide 
concentration profiles were determined, 
a constant-rate syringe pump being used 
to fill simultaneously eight 60-ml poly- 
propylene syringes, each with air from a 
different sampling height. Air samples 
accumulated over a 1-hour period were 
then analyzed by GC-EC. Unlike the soil 
cover approach, the aerodynamic profile 
method imposed no artificial conditions 
or constraints upon the area under study, 
and it provided a vertical flux estimate 
integrated over a large soil area. How- 
ever, use of the method was limited to 
periods of high N20 flux, because only 
then were the differences in N20 concen- 
tration between sampling heights larger 
than the minimum detectable difference 
of GC-EC (1 to 2 parts per billion, by vol- 
ume). 

Whenever both methods could be used 
simultaneously, agreement between the 
two was acceptable, considering the 
large spatial and temporal variability of 
N20 emissions from soil. The aerody- 
namic profile flux, always the larger of 
the two estimates, never exceeded twice 
the mean of four individual simultaneous 
determinations by the soil cover method, 
although the range of those four determi- 
nations often included values differing 
more than twofold. Despite this high var- 
iability, we concluded that the soil cov- 
ers employed in this study furnished 
meaningful estimates of N20 flux, pro- 
vided adequate precautions were taken 
to minimize disturbance of the energy 
and mass transfer processes normally 
operating at and above the soil surface. 
Necessary precautions are discussed in 
detail by Hutchinson and Mosier (12). 

Except for a 3-week period following 
fertilization of the field on 23 June, the 
data in Fig. 1 are similar to measure- 
ments of N20O loss in the many laborato- 
ry studies of denitrification in soil. Both 
are well summarized by the statement of 
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Fig. 1. Vertical N2O flux density, as measured by two independent methods,; 
cornfield during the 1978 growing season. Rainfalls exceeding 1 cm, irrigat 
fertilization are marked with labeled arrows. 

Smith et al. (13) that "denitrification oc- 
curs in periodic bursts, in response to 
changes in oxygen status, against a back- 
ground of very slow yet continuous de- 
nitrification." Broadbent and Clark (14) 
also concluded that denitrification in soil 
is slow except during periods when oxy- 
gen diffusion is limited, usually by water. 
The largest N20O flux at our field site was 
measured after a heavy irrigation (23 cm 
of water) on 19 July, followed by rainfall 
(2 cm) on 21 July, at a time when soil ni- 
trate levels were high as a result of fertil- 
ization about 4 weeks earlier. During the 
week of 19 to 25 July, N2O emissions 
amounted to 59 percent of the total lost 
during the growing season before dimin- 
ishing to low, preirrigation levels. Al- 
though other bursts of N20 arising from 
denitrification were much smaller, each 
incidence of irrigation or of precipitation 
exceeding 1 cm (marked by labeled ar- 
rows in Fig. 1) was followed by an imme- 
diate increase in the vertical N20 flux 
(see data for 19 May, 30 June, 20 July, 7 
August, and 5 September). Our measure- 
ments indicated that the cornfield was al- 
ways a source, never a sink, for tropo- 
spheric N2O, even though some labora- 
tory studies have shown that N20 can be 
absorbed and reduced to dinitrogen gas 
(N2) in anaerobic soils (15). 

During the period 23 June to 13 July, 
high N20O emissions, accounting for 30 
percent of the growing season's total, 
coincided with the time when applied 
ammonia fertilizer was being oxidized to 
nitrate by soil bacteria. Unlike other 
peaks in Fig. 1, the N20 flux continued 
high for a comparatively long time, even 
though the soil remained aerobic, and 
apparently represented N20 produced 
by autotrophic nitrification. Recent stud- 
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influence on tree-ring isotopes arising 
from changes in the ocean temperature. 
(2). 

The object of this report is to demon- 
strate that the sea-surface temperature 
does not appreciably affect isotope ratios 
that depend upon the atmospheric ratio. 
Conversely, sea-surface temperature 
changes cannot be inferred from terres- 
trial records. 

Earlier speculations appear to have 
been influenced by an erroneous esti- 
mate of the temperature coefficient of the 
solubility of CO2 in seawater. Although 
Hamberg (3) found correct values last 
century, I have shown (4) that the value 
of 4 percent per degree Celsius in com- 
mon use today (5-7) is (aP/aT)A,c, that is, 
it is the change in the partial pressure 
of CO2 (P) with respect to temperature 
(T) at constant alkalinity (A) and con- 
stant total CO2 (C = CO2aq + H2COa + 
HCO3- + C022-) in solution. This coeffi- 
cient is appropriate only to the theory (6) 
and experiment (7) for which it was de- 
rived and not to air-sea exchange. The 
condition of constant total CO2 in solu- 
tion i -'learly violated if CO2 moves be- 
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tween sea and air. The correct coeffi- 
cient is (OP/OT)A,., where X indicates that 
the sum of CO2 in sea and air must re- 
main constant. Obviously, the magni- 
tude of the temperature coefficient is a 
function of the depth (z) of the surface 
ocean assumed to be in active exchange 
with the atmosphere. For an ocean 100 m 
deep, this coefficient is almost exactly 
ten times smaller than the commonly 
quoted constant-C value, and reduces 
tenfold the apparent T sensitivity of P 
and of isotopic redistribution accom- 
panying a change in T. 

The calculation that I present below 
does not allow the usual approximations 
that make working with isotopic 8 values 
convenient, and we must resort to the 
full equations. These are as follows: 
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Ks = Rico3-/Rco2 = Rsea/Rair = 

(8s + 1000)/(5a + 1000) 

and 

8s = (6a + 1000)Ks - 1000 = 

8a + (Ks- 1)(1000 + 8a) 

A.x= (R /Ro - 1)1000 

Ks = Rico3-/Rco2 = Rsea/Rair = 

(8s + 1000)/(5a + 1000) 

and 

8s = (6a + 1000)Ks - 1000 = 

8a + (Ks- 1)(1000 + 8a) 

(3) (3) 

(4) (4) 

(5) (5) 

If we ignore interaction with the ma- 
rine biota, the computation follows the 
symbolic outline of Table 1. There are 
18 equations relating 24 quantities, so 
that, if six independent parameters are 
known, the system is determinate. 

Of the several evaluations (9-11) of Ks, 
I adopt that of Mook et al. (10), because 
it lies in the middle of the range of the 
other values and is the most internally 
consistent. Defining E, they write 

= (K, - 1)1000 = (9483/T) - 23.89 

(6) 
where T is in degrees Kelvin. 

For simplicity, I ignore the oceanic 
maximum in C at a depth of 1 km, which 
is supported by the respiration of verti- 
cally migrating predators and by detrital 
oxidation, and assume that C is constant 
with depth. It is then possible to com- 
pute C (4) from A and P, for the wind- 
stirred layer is never far from equilibri- 
um. 

The only remaining troublesome quan- 
tity is P', the partial pressure after a 
change in T. This must be calculated (4) 
from the temperature-sensitive reaction 
functions for H2CO3. The exact value 
will depend upon which set of functions 

If we ignore interaction with the ma- 
rine biota, the computation follows the 
symbolic outline of Table 1. There are 
18 equations relating 24 quantities, so 
that, if six independent parameters are 
known, the system is determinate. 

Of the several evaluations (9-11) of Ks, 
I adopt that of Mook et al. (10), because 
it lies in the middle of the range of the 
other values and is the most internally 
consistent. Defining E, they write 

= (K, - 1)1000 = (9483/T) - 23.89 

(6) 
where T is in degrees Kelvin. 

For simplicity, I ignore the oceanic 
maximum in C at a depth of 1 km, which 
is supported by the respiration of verti- 
cally migrating predators and by detrital 
oxidation, and assume that C is constant 
with depth. It is then possible to com- 
pute C (4) from A and P, for the wind- 
stirred layer is never far from equilibri- 
um. 

The only remaining troublesome quan- 
tity is P', the partial pressure after a 
change in T. This must be calculated (4) 
from the temperature-sensitive reaction 
functions for H2CO3. The exact value 
will depend upon which set of functions 

0036-8075/79/0914-1127$00.50/0 Copyright ? 1979 AAAS 0036-8075/79/0914-1127$00.50/0 Copyright ? 1979 AAAS 

Carbon-13 in Tree Rings Indicates No Record of 
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Abstract. When the correct values for the temperature coefficient of carbon diox- 
ide solubility in seawater are used, theoretical calculations show that no measurable 
carbon-isotope redistribution occurs between sea and air for any plausible change in 
the sea-surface temperature. Although this fact invalidates one possible paleother- 
mometer, it somewhat simplifies the interpretation of carbon-13 data in terrestrial 
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